Abstract:
Mathematical models of dynamical systems containing small parameters in nonlinearities are usually called quasilinear systems. We present a survey of results obtained for problems of optimization of quasilinear dynamical systems in the Minsk scientific school on optimal control. We consider time-optimal control problems, terminal control problems with variable right ends of trajectories, minimum force control problems, and problems of minimization of integral quadratic functionals. The research is based on the idea of a special finite-dimensional parameterization of optimal controls. The computation of asymptotic approximations to optimal controls in the quasilinear problems under consideration is reduced to solving some basic problems, which, unlike the original problems for quasilinear systems, are optimization problems for linear systems, to the integration of linear differential equations, and to finding roots of nonsingular linear algebraic systems.
Citation:
R. Gabasov, A. I. Kalinin, F. M. Kirillova, L. I. Lavrinovich, “On asymptotic optimization methods for quasilinear control systems”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 62–72
\Bibitem{GabKalKir19}
\by R.~Gabasov, A.~I.~Kalinin, F.~M.~Kirillova, L.~I.~Lavrinovich
\paper On asymptotic optimization methods for quasilinear control systems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 62--72
\mathnet{http://mi.mathnet.ru/timm1647}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-62-72}
\elib{https://elibrary.ru/item.asp?id=39323537}
Linking options:
https://www.mathnet.ru/eng/timm1647
https://www.mathnet.ru/eng/timm/v25/i3/p62
This publication is cited in the following 4 articles:
I. V. Rasina, I. S. Guseva, “Ob odnom klasse diskretno-nepreryvnykh sistem s parametrami”, Programmnye sistemy: teoriya i prilozheniya, 14:1 (2023), 125–148
Ivan O. Osipov, “Convexity of reachable sets of quasilinear systems”, Ural Math. J., 9:2 (2023), 141–156
A. I. Kalinin, L. I. Lavrinovich, D. Yu. Prudnikova, “Metod malogo parametra v zadache optimizatsii kvazilineinoi dinamicheskoi sistemy”, Zhurn. Belorus. gos. un-ta. Matem. Inf., 2 (2022), 23–33
I. V. Rasina, O. V. Fesko, O. V. Usenko, “Analytical design of controllers for discrete-continuous systems with linear control”, Program Systems: Theory and Applications, 12:2 (2021), 121–135