Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 3, Pages 45–61
DOI: https://doi.org/10.21538/0134-4889-2019-25-3-45-61
(Mi timm1646)
 

This article is cited in 3 scientific papers (total in 3 papers)

On a Differential Game in a Stochastic System

L. A. Vlasenkoa, A. G. Rutkasa, A. A. Chikriib

a Kharkiv National University of RadioElectronics
b Glushkov Institute of Cybernetics NAS Ukraine
Full-text PDF (269 kB) Citations (3)
References:
Abstract: We study the game problem of approach for a system whose dynamics is described by a stochastic differential equation in a Hilbert space. The main assumption on the equation is that the operator multiplying the system state generates a strongly continuous semigroup (a semigroup of class C0). Solutions of the equation are represented by a stochastic variation of constants formula. Using constraints on the support functionals of sets defined by the behavior of the pursuer and the evader, we obtain conditions for the approach of the system state to a cylindrical terminal set. The results are illustrated with a model example of a simple motion in a Hilbert space with random perturbations. Applications to distributed systems described by stochastic partial differential equations are considered. By taking into account a random external influence, we consider the heat propagation process with controlled distributed heat sources and sinks.
Keywords: differential game, stochastic differential equation, Wiener process, generator of a strongly continuous semigroup, set-valued mapping, support functional, resolving functional, stochastic partial differential equation.
Received: 05.04.2019
Revised: 15.05.2019
Accepted: 20.05.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 309, Issue 1, Pages S185–S198
DOI: https://doi.org/10.1134/S0081543820040203
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N70, 47D03, 65C30
Language: Russian
Citation: L. A. Vlasenko, A. G. Rutkas, A. A. Chikrii, “On a Differential Game in a Stochastic System”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 45–61; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S185–S198
Citation in format AMSBIB
\Bibitem{VlaRutChi19}
\by L.~A.~Vlasenko, A.~G.~Rutkas, A.~A.~Chikrii
\paper On a Differential Game in a Stochastic System
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 45--61
\mathnet{http://mi.mathnet.ru/timm1646}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-45-61}
\elib{https://elibrary.ru/item.asp?id=39323536}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S185--S198
\crossref{https://doi.org/10.1134/S0081543820040203}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485178300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078228254}
Linking options:
  • https://www.mathnet.ru/eng/timm1646
  • https://www.mathnet.ru/eng/timm/v25/i3/p45
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :95
    References:57
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025