Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 102–115
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-102-115
(Mi timm1627)
 

Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions

N. A. Ilyasov

Baku State University
References:
Abstract: The following results are proved in the paper.
$\bf{Theorem~1.}$ Let $m \ge 1,\ f\in L_1(\mathbb{T}^m),\ l,k\in \mathbb N,\ l> m,\ \rho=l-(k+m),$ and $\sum_{n=1}^{\infty}n^{m-1}\omega_{l}(f;d/n)_{1,m}<\infty$. Then $f$ is equivalent to some function $\psi\in C(\mathbb{T}^m)$ and
$(a)$  $\displaystyle \omega_{k}\Big(\psi;\frac{d}{n}\Big)_{\infty,m} \le C_{1}(k,l,m)\bigg\{\sum\limits_{\nu=n+1}^{\infty}\nu^{m-1}\omega_{l}\Big(f;\frac{d}{\nu}\Big)_{1,m}+\chi (\rho)n^{-k}\sum\limits_{\nu=1}^{n}\nu^{k+m-1}\omega_{l}\Big(f;\frac{d}{\nu}\Big)_{1,m}\bigg\},\quad n\in \mathbb N,$
where $\omega_{l}(f;\delta)_{1,m}$ is the $l$ th-order complete modulus of smoothness of $f$, $\omega_{k}(\psi;\delta)_{\infty,m}$ is the $k$ th-order complete modulus of smoothness of $\psi$, $\mathbb{T}^m=(-\pi,\pi]^{m}$, $d=\pi m^{1/2}$, $\chi(t)=0$ for $t\le 0$, and $\chi(t)=1$ for $t>0$.
In the case $l=k+m\ (\Rightarrow \chi(\rho)=0)$, the proof of estimate (a) relies substantially on the inequality
$(b)$  $\displaystyle n^{-k}\max\limits_{|\alpha|=k}\Big\|\frac{\partial^{|\alpha|}T_{n,\ldots,n;1}(f;x)}  {\partial x^{\alpha}}\Big\|_{\infty,m} \le C_{2}(k,m)n^{m}\omega_{k+m}\Big(f;\frac{d}{n+1}\Big)_{1,m},\quad n\in \mathbb N$,
 where $T_{n,\ldots,n;1}(f;x_{1},\ldots,x_{m})$ is a polynomial of best $L_{1}(\mathbb{T}^m)$-approximation to $f$ of order $n\in \mathbb N$ with respect to the variable $x_{i}$ $(i=\overline{1,m})$ and $\alpha=(\alpha_{1},\ldots,\alpha_{m})$, $\alpha_{j} \in \mathbb Z_{+}$ $(j=\overline{1,m})$, is a multiindex of length $|\alpha|=k$. Inequality (b) is proved by using a multivariate version of Turan's type inequality: for each trigonometric polynomial $t_{n_{1},\ldots,n_{m}}(x_{1},\ldots,x_{m})$ of order $n_{i} \in \mathbb N$ with respect to the variable $x_{i}$ $(i=\overline{1,m})$, we have the inequality
$(c)$   $\displaystyle \Big\|\frac{\partial^{k}t_{n_{1},\ldots,n_{m}}(x)}{\partial x^{\alpha}}\Big\|_{\infty,m} \le \Big(\frac{\pi}{2}\Big)^m \Big\|\frac{\partial^{k+m}t_{n_{1},\ldots,n_{m}}(x_{1},\ldots,x_{m})}{\partial x_{1}^{\alpha_{1}+1}\ldots\partial x_{m}^{\alpha_{m}+1}}\Big\|_{1,m},$
 which follows directly from a similar inequality (with $k=0$ in inequality $(c)$) but holds under the conditions $\frac{1}{2\pi}\displaystyle\int\nolimits_{0}^{2\pi}t_{n_{1},\ldots,n_{i},\ldots,n_{m}}(x_{1},\ldots,x_{i}-y_{i},\ldots,x_{m})\, dy_{i}=0,$ $i=\overline{1,m}.$
Estimate (a) is order-sharp in the class $H_{1,m}^l[\omega]=\{f\in L_1(\mathbb{T}^m):\ \omega_{l}(f;\delta)_{1,m} \le \omega (\delta)$, $\delta \in (0,d]\}$,  where $\omega \in \Omega_{l}(0,d]$ is the class of functions $\omega =\omega (\delta)$ defined on $(0,d]$ and satisfying the conditions $0<\omega (\delta)\downarrow 0\ (\delta \downarrow 0)$ and $\delta^{-l}\omega(\delta)\downarrow(\delta\uparrow)$.
$\bf{Theorem~2.}$  Let $m\ge 1,\ l,k\in \mathbb N,\ l>m,\ \rho =l-(k+m),\ \omega \in \Omega_{l}(0,d],$ and $\sum_{n=1}^{\infty}n^{m-1}\omega(d/n) <\infty$. Then
$$ \sup\Big\{ \omega_{k} \Big(\psi;\frac{d}{n}\Big)_{\infty,m}:\ f\in H_{1,m}^{l} [\omega]\Big\} \asymp \sum_{\nu=n+1}^{\infty}\nu^{m-1}\omega\Big(\frac{d}{\nu}\Big) +\chi(\rho) n^{-k}\sum_{\nu=1}^{n}\nu^{k+m-1}\omega\Big(\frac{d}{\nu}\Big),\quad n\in \mathbb N, $$
where $\psi$ is the corresponding function from the class $C(\mathbb{T}^m)$ equivalent to $f\in H_{1,m}^{l}[\omega]$.
Keywords: complete modulus of smoothness, multivariate version of Turan's type inequality, inequalities between moduli of smoothness of various order in different metrics, order-sharp inequality on a class.
Received: 18.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.518.28 + 517.518.862
MSC: 42A10, 41A17, 41A25
Language: Russian
Citation: N. A. Ilyasov, “Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 102–115
Citation in format AMSBIB
\Bibitem{Ily19}
\by N.~A.~Ilyasov
\paper Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 102--115
\mathnet{http://mi.mathnet.ru/timm1627}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-102-115}
\elib{https://elibrary.ru/item.asp?id=38071605}
Linking options:
  • https://www.mathnet.ru/eng/timm1627
  • https://www.mathnet.ru/eng/timm/v25/i2/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024