Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 102–115
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-102-115
(Mi timm1627)
 

Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions

N. A. Ilyasov

Baku State University
References:
Abstract: The following results are proved in the paper.
Theorem 1. Let m1, fL1(Tm), l,kN, l>m, ρ=l(k+m), and n=1nm1ωl(f;d/n)1,m<. Then f is equivalent to some function ψC(Tm) and
(a)  ωk(ψ;dn),mC1(k,l,m){ν=n+1νm1ωl(f;dν)1,m+χ(ρ)nknν=1νk+m1ωl(f;dν)1,m},nN,
where ωl(f;δ)1,m is the l th-order complete modulus of smoothness of f, ωk(ψ;δ),m is the k th-order complete modulus of smoothness of ψ, Tm=(π,π]m, d=πm1/2, χ(t)=0 for t0, and χ(t)=1 for t>0.
In the case l=k+m (χ(ρ)=0), the proof of estimate (a) relies substantially on the inequality
(b)  nkmax|α|=k|α|Tn,,n;1(f;x)xα,mC2(k,m)nmωk+m(f;dn+1)1,m,nN,
 where Tn,,n;1(f;x1,,xm) is a polynomial of best L1(Tm)-approximation to f of order nN with respect to the variable xi (i=¯1,m) and α=(α1,,αm), αjZ+ (j=¯1,m), is a multiindex of length |α|=k. Inequality (b) is proved by using a multivariate version of Turan's type inequality: for each trigonometric polynomial tn1,,nm(x1,,xm) of order niN with respect to the variable xi (i=¯1,m), we have the inequality
(c)   ktn1,,nm(x)xα,m(π2)mk+mtn1,,nm(x1,,xm)xα1+11xαm+1m1,m,
 which follows directly from a similar inequality (with k=0 in inequality (c)) but holds under the conditions 12π2π0tn1,,ni,,nm(x1,,xiyi,,xm)dyi=0, i=¯1,m.
Estimate (a) is order-sharp in the class Hl1,m[ω]={fL1(Tm): ωl(f;δ)1,mω(δ), δ(0,d]},  where ωΩl(0,d] is the class of functions ω=ω(δ) defined on (0,d] and satisfying the conditions 0<ω(δ)0 (δ0) and δlω(δ)(δ).
Theorem 2.  Let m1, l,kN, l>m, ρ=l(k+m), ωΩl(0,d], and n=1nm1ω(d/n)<. Then
sup{ωk(ψ;dn),m: fHl1,m[ω]}ν=n+1νm1ω(dν)+χ(ρ)nknν=1νk+m1ω(dν),nN,
where ψ is the corresponding function from the class C(Tm) equivalent to fHl1,m[ω].
Keywords: complete modulus of smoothness, multivariate version of Turan's type inequality, inequalities between moduli of smoothness of various order in different metrics, order-sharp inequality on a class.
Received: 18.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.518.28 + 517.518.862
MSC: 42A10, 41A17, 41A25
Language: Russian
Citation: N. A. Ilyasov, “Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 102–115
Citation in format AMSBIB
\Bibitem{Ily19}
\by N.~A.~Ilyasov
\paper Multivariate version of Turan’s type inequality and its applications to the estimation of uniform moduli of smoothness of periodic functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 102--115
\mathnet{http://mi.mathnet.ru/timm1627}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-102-115}
\elib{https://elibrary.ru/item.asp?id=38071605}
Linking options:
  • https://www.mathnet.ru/eng/timm1627
  • https://www.mathnet.ru/eng/timm/v25/i2/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :104
    References:59
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025