Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 75–87
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-75-87
(Mi timm1625)
 

This article is cited in 7 scientific papers (total in 7 papers)

Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces

D. V. Gorbachev, V. I. Ivanov

Tula State University
Full-text PDF (251 kB) Citations (7)
References:
Abstract: We study the exact constant in the Nikol'skii–Bernstein inequality $\|Df\|_{q}\le C\|f\|_{p}$ on the subspace of entire functions $f$ of exponential spherical type in the space $L^{p}(\mathbb{R}^{d})$ with a power-type weight $v_{\kappa}$. For the differential operator $D$, we take a nonnegative integer power of the Dunkl Laplacian $\Delta_{\kappa}$ associated with the weight $v_{\kappa}$. This situation encompasses the one-dimensional case of the space $L^{p}(\mathbb{R}_{+})$ with the power weight $t^{2\alpha+1}$ and Bessel differential operator. Our main result consists in the proof of an equality between the multidimensional and one-dimensional weighted constants for $1\le p\le q=\infty$. For this, we show that the norm $\|Df\|_{\infty}$ can be replaced by the value $Df(0)$, which was known only in the one-dimensional case. The required mapping of the subspace of functions, which actually reduces the problem to the radial and, hence, one-dimensional case, is implemented by means of the positive operator of Dunkl generalized translation $T_{\kappa}^{t}$. We prove its new property of analytic continuation in the variable $t$. As a consequence, we calculate the weighted Bernstein constant for $p=q=\infty$, which was known in exceptional cases only. We also find some estimates of the constants and give a short list of open problems.
Keywords: Nikol'skii–Bernstein inequality, exact constant, entire function of exponential spherical type, power-type weight, Dunkl Laplacian.
Funding agency Grant number
Russian Science Foundation 18-11-00199
This work was supported by the Russian Science Foundation (project no. 18-11-00199).
Received: 08.04.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 309, Issue 1, Pages S24–S35
DOI: https://doi.org/10.1134/S0081543820040045
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A17, 42B10
Language: Russian
Citation: D. V. Gorbachev, V. I. Ivanov, “Nikol'skii–Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 75–87; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S24–S35
Citation in format AMSBIB
\Bibitem{GorIva19}
\by D.~V.~Gorbachev, V.~I.~Ivanov
\paper Nikol'skii--Bernstein Constants for Entire Functions of Exponential Spherical Type in Weighted Spaces
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 75--87
\mathnet{http://mi.mathnet.ru/timm1625}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-75-87}
\elib{https://elibrary.ru/item.asp?id=38071602}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S24--S35
\crossref{https://doi.org/10.1134/S0081543820040045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485177500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078451214}
Linking options:
  • https://www.mathnet.ru/eng/timm1625
  • https://www.mathnet.ru/eng/timm/v25/i2/p75
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :67
    References:46
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024