Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 30–41
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-30-41
(Mi timm1621)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the approximation of the Hilbert transform

R. A. Alievab, Ch. A. Gadjievac

a Baku State University
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
c Baku Engineering University
Full-text PDF (230 kB) Citations (1)
References:
Abstract: The article is devoted to the approximation of the Hilbert transform $\left(Hu\right)\left(t\right)=\displaystyle\frac{1}{\pi } \int _{R}\displaystyle\frac{u\left(\tau \right)}{t-\tau } d\tau $ of functions $u\in L_{2} \left(R\right)$ by operators of the form $(H_{\delta}u)(t)=\displaystyle\frac{1}{\pi}\sum_{k=-\infty}^{\infty}\displaystyle \frac{u(t+(k+1/2)\delta)}{-k-1/2}$,  $\delta >0$. The main results are the following statements.
$\bf{Theorem~1.}$  For any $\delta >0$ the operators $H_{\delta } $ are bounded in the space $L_{p} \left(R\right)$, $1<p<\infty $, and
$$\left\| H_{\delta } \right\| _{L_{p} \left(R\right)\to L_{p} \left(R\right)} \le \left\| \tilde{h}\right\| _{l_{p} \to l_{p} },$$
where $\tilde{h}$ is the modified discrete Hilbert transform defined by the equality 

$$ \widetilde{h}(b)=\big\{(\widetilde{h}(b))_{n}\big\}_{n\in \mathbb Z},\quad  \big(\widetilde{h}(b)\big)_{n}=\sum_{m\in \mathbb Z}\frac{b_{m}}{n-m-1/2},\quad n\in \mathbb Z,\quad b=\{b_{n}\}_{n\in \mathbb Z} \in l_{1}. $$

$\bf {Theorem~2.}$  For any $\delta >0$ and $u\in L_{p} \left(R\right)$, $1<p<\infty$, the following inequality holds:
$$H_{\delta } \left(H_{\delta } u\right)\left(t\right)=-u\left(t\right).$$

$\bf {Theorem~3.}$  For any $\delta >0$ the sequence of operators $\{H_{\delta/n}\}_{n\in \mathbb N}$  strongly converges to the operator $H$ in $L_{2} \left(R\right)$; i.e., the following inequality holds for any $u\in L_{2} \left(R\right)$:
$$ \lim\limits_{n\to \infty}\|H_{\delta/n} u-Hu\|_{L_{2}(R)}=0. $$
Keywords: Hilbert transform, singular integral, approximation, discrete Hilbert transform.
Received: 08.04.2019
Bibliographic databases:
Document Type: Article
UDC: 517.518.85+519.651
Language: Russian
Citation: R. A. Aliev, Ch. A. Gadjieva, “On the approximation of the Hilbert transform”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 30–41
Citation in format AMSBIB
\Bibitem{AliGad19}
\by R.~A.~Aliev, Ch.~A.~Gadjieva
\paper On the approximation of the Hilbert transform
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 30--41
\mathnet{http://mi.mathnet.ru/timm1621}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-30-41}
\elib{https://elibrary.ru/item.asp?id=38071597}
Linking options:
  • https://www.mathnet.ru/eng/timm1621
  • https://www.mathnet.ru/eng/timm/v25/i2/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025