|
This article is cited in 1 scientific paper (total in 1 paper)
On the approximation of the Hilbert transform
R. A. Alievab, Ch. A. Gadjievac a Baku State University
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
c Baku Engineering University
Abstract:
The article is devoted to the approximation of the Hilbert transform $\left(Hu\right)\left(t\right)=\displaystyle\frac{1}{\pi } \int _{R}\displaystyle\frac{u\left(\tau \right)}{t-\tau } d\tau $ of functions $u\in L_{2} \left(R\right)$ by operators of the form $(H_{\delta}u)(t)=\displaystyle\frac{1}{\pi}\sum_{k=-\infty}^{\infty}\displaystyle \frac{u(t+(k+1/2)\delta)}{-k-1/2}$, $\delta >0$. The main results are the following statements.
$\bf{Theorem~1.}$ For any $\delta >0$ the operators $H_{\delta } $ are bounded in the space $L_{p} \left(R\right)$, $1<p<\infty $, and
$$\left\| H_{\delta } \right\| _{L_{p} \left(R\right)\to L_{p} \left(R\right)} \le \left\| \tilde{h}\right\| _{l_{p} \to l_{p} },$$
where $\tilde{h}$ is the modified discrete Hilbert transform defined by the equality
$$
\widetilde{h}(b)=\big\{(\widetilde{h}(b))_{n}\big\}_{n\in \mathbb Z},\quad \big(\widetilde{h}(b)\big)_{n}=\sum_{m\in \mathbb Z}\frac{b_{m}}{n-m-1/2},\quad n\in \mathbb Z,\quad b=\{b_{n}\}_{n\in \mathbb Z} \in l_{1}.
$$
$\bf {Theorem~2.}$ For any $\delta >0$ and $u\in L_{p} \left(R\right)$, $1<p<\infty$, the following inequality holds:
$$H_{\delta } \left(H_{\delta } u\right)\left(t\right)=-u\left(t\right).$$
$\bf {Theorem~3.}$ For any $\delta >0$ the sequence of operators $\{H_{\delta/n}\}_{n\in \mathbb N}$ strongly converges to the operator $H$ in $L_{2} \left(R\right)$; i.e., the following inequality holds for any $u\in L_{2} \left(R\right)$:
$$
\lim\limits_{n\to \infty}\|H_{\delta/n} u-Hu\|_{L_{2}(R)}=0.
$$
Keywords:
Hilbert transform, singular integral, approximation, discrete Hilbert transform.
Received: 08.04.2019
Citation:
R. A. Aliev, Ch. A. Gadjieva, “On the approximation of the Hilbert transform”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 30–41
Linking options:
https://www.mathnet.ru/eng/timm1621 https://www.mathnet.ru/eng/timm/v25/i2/p30
|
|