Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 21–29
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-21-29
(Mi timm1620)
 

This article is cited in 4 scientific papers (total in 4 papers)

Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class

R. R. Akopyanab

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (198 kB) Citations (4)
References:
Abstract: In the Hardy space $\mathcal{H}^p(D_\varrho)$, $1\le p\le\infty$, of functions analytic in the disk $D_\varrho=\left\{z\in\mathbb{C}\,:\,|z|<\varrho\right\}$, we denote by $NH^p(D_\varrho)$, $N>0$, the class of functions whose $L^p$-norm on the circle $\gamma_\varrho=\left\{z\in\mathbb{C} :\, |z|=\varrho\right\}$ does not exceed the number $N$ and by $\partial H^p(D_\varrho)$ the class consisting of the derivatives of functions from $1H^p(D_\varrho)$. We consider the problem of the best approximation of the class $\partial H^p(D_\rho)$ by the class $NH^p(D_R)$, $N>0$, with respect to the $L^p$‑norm on the circle $\gamma_r$, $0<r<\rho<R$. The order of the best approximation as $N\rightarrow+\infty$ is found:
$$ \mathcal{E}\left(\partial H^p(D_\rho), NH^p(D_R)\right)_{L^p(\Gamma_r)} \asymp N^{-\beta/\alpha} \ln^{1/\alpha}N, \quad \alpha=\frac{\ln R-\ln\rho}{\ln R-\ln r}, \quad \beta=1-\alpha.$$
In the case where the parameter $N$ belongs to some sequence of intervals, the exact value of the best approximation and a linear method implementing it are obtained. A similar problem is considered for classes of functions analytic in annuli.
Keywords: analytic functions, Hardy class, best approximation of a class by a class.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00336
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 18-01-00336 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 01.04.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 308, Issue 1, Pages S1–S8
DOI: https://doi.org/10.1134/S0081543820020017
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 30E10, 30H10
Language: Russian
Citation: R. R. Akopyan, “Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 21–29; Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S1–S8
Citation in format AMSBIB
\Bibitem{Ako19}
\by R.~R.~Akopyan
\paper Approximation of Derivatives of Analytic Functions from One Hardy Class by Another Hardy Class
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 21--29
\mathnet{http://mi.mathnet.ru/timm1620}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-21-29}
\elib{https://elibrary.ru/item.asp?id=38071595}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 308
\issue , suppl. 1
\pages S1--S8
\crossref{https://doi.org/10.1134/S0081543820020017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485177500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078911490}
Linking options:
  • https://www.mathnet.ru/eng/timm1620
  • https://www.mathnet.ru/eng/timm/v25/i2/p21
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025