Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 2, Pages 9–20
DOI: https://doi.org/10.21538/0134-4889-2019-25-2-9-20
(Mi timm1619)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space

G. A. Akishevab

a L. N. Gumilev Eurasian National University, Astana
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (227 kB) Citations (1)
References:
Abstract: We consider the generalized Lorentz space $L_{\psi,\tau}(\mathbb{T}^m)$ defined by some continuous concave function $\psi$ such that $\psi (0)=0$. For two spaces $L_{\psi_1,\tau_1}(\mathbb{T}^m)$ and $L_{\psi_2,\tau_2}(\mathbb{T}^{m})$ such that $\alpha_{\psi_{1}}={\underline\lim}_{t\rightarrow 0}\psi_{1}(2t)/\psi_{1}(t) = \beta_{\psi_{2}} = \overline{\lim}_{t\rightarrow 0}\psi_{2}(2t)/\psi_{2}(t)$, we prove an order-exact inequality of different metrics for multiple trigonometric polynomials. We also prove an auxiliary statement for functions of one variable with monotonically decreasing Fourier coefficients in a trigonometric system. In this statement we establish a two-sided estimate for the norm of the function $f\in L_{\psi, \tau}(\mathbb{T})$ in terms of the series composed of the Fourier coefficients of this function.
Keywords: generalized Lorentz space, Jackson–Nikol'skii inequality, trigonometric polynomial.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 31.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A05, 42A10, 46E30
Language: Russian
Citation: G. A. Akishev, “On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 2, 2019, 9–20
Citation in format AMSBIB
\Bibitem{Aki19}
\by G.~A.~Akishev
\paper On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 2
\pages 9--20
\mathnet{http://mi.mathnet.ru/timm1619}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-2-9-20}
\elib{https://elibrary.ru/item.asp?id=38071594}
Linking options:
  • https://www.mathnet.ru/eng/timm1619
  • https://www.mathnet.ru/eng/timm/v25/i2/p9
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025