Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 156–175
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-156-175
(Mi timm1583)
 

Pointwise Turán problem for periodic positive definite functions

V. I. Ivanov

Tula State University
References:
Abstract: We study the pointwise Turán problem on the largest value at an arbitrary point $x$ of a $1$-periodic positive definite function supported on the interval $[-h, h]$ and equal to $1$ at zero. For rational values of $x$ and $h$, the problem reduces to a discrete version of the Fejér problem on the largest value of the $\nu$th coefficient of an even trigonometric polynomial of order $p-1$ that has zero coefficient 1 and is nonnegative on a uniform grid $k/q$, $k=0,\dots,q-1$. The discrete Fejér problem is solved for a number of values of the parameters $\nu$, $p$, and $q$. In all the cases, we construct extremal polynomials and quadrature formulas, which yield an estimate for the largest coefficient.
Keywords: Fourier transform and series, periodic positive definite function, pointwise Turán problem, quadrature formula, extremal polynomial.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00308
This work was supported by the Russian Foundation for Basic Research (project no. 16-01-00308).
Received: 29.08.2018
Revised: 09.11.2018
Accepted: 12.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A05, 42A32, 42A82
Language: Russian
Citation: V. I. Ivanov, “Pointwise Turán problem for periodic positive definite functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 156–175
Citation in format AMSBIB
\Bibitem{Iva18}
\by V.~I.~Ivanov
\paper Pointwise Tur\'an problem for periodic positive definite functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 156--175
\mathnet{http://mi.mathnet.ru/timm1583}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-156-175}
\elib{https://elibrary.ru/item.asp?id=36517707}
Linking options:
  • https://www.mathnet.ru/eng/timm1583
  • https://www.mathnet.ru/eng/timm/v24/i4/p156
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024