Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 4, Pages 146–155
DOI: https://doi.org/10.21538/0134-4889-2018-24-4-146-155
(Mi timm1582)
 

Large vertex-symmetric Higman graphs with $\mu=6$

N. D. Zyulyarkinaa, M. Kh. Shermetovab

a South Ural State University, Chelyabinsk
b Kabardino-Balkar State University, Nal'chik
References:
Abstract: A strongly regular graph with $v={m\choose 2}$ and $k=2(m-2)$ is called a Higman graph. In such a graph, the parameter $\mu$ is 4, 6, 7, or 8. If $\mu=6$, then $m\in\{9,17,27,57\}$. Vertex-symmetric Higman graphs were classified by N.D. Zyulyarkina and A.A. Makhnev (all of these graphs turned out to have rank 3). A program of classification of vertex-symmetric Higman graphs is implemented. Earlier Zyulyarkina and Makhnev found vertex-symmetric Higman graphs with $\mu=6$ and $m\in\{9,17\}$. In the present paper, vertex-symmetric Higman graphs with $\mu=6$ and $m\in{27,57}$ are studied. It is interesting that the group $G/S(G)$ may contain two components $L$ and $M$. In the case $m=27$, we have $M\cong A_5,A_6$ and $L\cong L_3(3)$; in the case $m=57$, we have either $M\cong PSp_4(3)$ and $L\cong L_3(7)$ or $M\cong A_6$ and $L\cong J_1$.
Keywords: distance-regular graph, graph automorphism.
Received: 20.02.2018
Revised: 16.10.2018
Accepted: 22.10.2018
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25, 20B25
Language: Russian
Citation: N. D. Zyulyarkina, M. Kh. Shermetova, “Large vertex-symmetric Higman graphs with $\mu=6$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2018, 146–155
Citation in format AMSBIB
\Bibitem{ZyuShe18}
\by N.~D.~Zyulyarkina, M.~Kh.~Shermetova
\paper Large vertex-symmetric Higman graphs with $\mu=6$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 4
\pages 146--155
\mathnet{http://mi.mathnet.ru/timm1582}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-4-146-155}
\elib{https://elibrary.ru/item.asp?id=36517706}
Linking options:
  • https://www.mathnet.ru/eng/timm1582
  • https://www.mathnet.ru/eng/timm/v24/i4/p146
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :38
    References:37
    First page:1
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025