Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 272–280
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-272-280
(Mi timm1568)
 

This article is cited in 2 scientific papers (total in 2 papers)

An algorithm for the polyhedral cycle cover problem with restrictions on the number and length of cycles

V. V. Shenmaier

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (206 kB) Citations (2)
References:
Abstract: A cycle cover of a graph is a spanning subgraph whose connected components are simple cycles. Given a complete weighted directed graph, consider the intractable problem of finding a maximum-weight cycle cover which satisfies an upper bound on the number of cycles and a lower bound on the number of edges in each cycle. We suggest a polynomial-time algorithm for solving this problem in the geometric case when the vertices of the graph are points in a multidimensional real space and the distances between them are induced by a positively homogeneous function whose unit ball is an arbitrary convex polytope with a fixed number of facets. The obtained result extends the ideas underlying the well-known algorithm for the polyhedral Max TSP.
Keywords: cycle cover, Max TSP, polyhedral metric, optimal solution, polynomial-time algorithm.
Funding agency Grant number
Russian Science Foundation 16-11-10041
This work was supported by the Russian Science Foundation (project no. 16-11-10041).
Received: 23.04.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 307, Issue 1, Pages S142–S150
DOI: https://doi.org/10.1134/S0081543819070113
Bibliographic databases:
Document Type: Article
UDC: 519.176
Language: Russian
Citation: V. V. Shenmaier, “An algorithm for the polyhedral cycle cover problem with restrictions on the number and length of cycles”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 272–280; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S142–S150
Citation in format AMSBIB
\Bibitem{She18}
\by V.~V.~Shenmaier
\paper An algorithm for the polyhedral cycle cover problem with restrictions on the number and length of cycles
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 272--280
\mathnet{http://mi.mathnet.ru/timm1568}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-272-280}
\elib{https://elibrary.ru/item.asp?id=35511293}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 307
\issue , suppl. 1
\pages S142--S150
\crossref{https://doi.org/10.1134/S0081543819070113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451634900024}
Linking options:
  • https://www.mathnet.ru/eng/timm1568
  • https://www.mathnet.ru/eng/timm/v24/i3/p272
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:141
    Full-text PDF :42
    References:36
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024