Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 263–271
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-263-271
(Mi timm1567)
 

This article is cited in 1 scientific paper (total in 1 paper)

On automorphism groups of AT4(7, 9,r)-graphs and their local subgraphs

L. Yu. Tsiovkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (205 kB) Citations (1)
References:
Abstract: The paper is devoted to the problem of classification of AT4$(p,p+2,r)$-graphs. An example of an AT4$(p,p+2,r)$-graph with $p=2$ is provided by the Soicher graph with intersection array $\{56, 45, 16,1;1,8, 45, 56\}$. The question of existence of AT4$(p,p+2,r)$-graphs with $p>2$ is still open. One task in their classification is to describe such graphs of small valency. We investigate the automorphism groups of a hypothetical AT4$(7,9,r)$-graph and of its local graphs. The local graphs of each AT4$(7,9,r)$-graph are strongly regular with parameters $(711,70,5,7)$. It is unknown whether a strongly regular graph with these parameters exists. We show that the automorphism group of each AT4$(7,9,r)$-graph acts intransitively on its arcs. Moreover, we prove that the automorphism group of each strongly regular graph with parameters $(711,70,5,7)$ acts intransitively on its vertices.
Keywords: antipodal tight graph, strongly regular graph, automorphism.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
This work was supported by the Russian Science Foundation (project no. 14-11-00061-П).
Received: 04.06.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 307, Issue 1, Pages S151–S158
DOI: https://doi.org/10.1134/S0081543819070125
Bibliographic databases:
Document Type: Article
UDC: 519.17+512.54
MSC: 05C12, 05E18, 05E30
Language: Russian
Citation: L. Yu. Tsiovkina, “On automorphism groups of AT4(7, 9,r)-graphs and their local subgraphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 263–271; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S151–S158
Citation in format AMSBIB
\Bibitem{Tsi18}
\by L.~Yu.~Tsiovkina
\paper On automorphism groups of AT4(7, 9,r)-graphs and their local subgraphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 263--271
\mathnet{http://mi.mathnet.ru/timm1567}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-263-271}
\elib{https://elibrary.ru/item.asp?id=35511292}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 307
\issue , suppl. 1
\pages S151--S158
\crossref{https://doi.org/10.1134/S0081543819070125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451634900023}
Linking options:
  • https://www.mathnet.ru/eng/timm1567
  • https://www.mathnet.ru/eng/timm/v24/i3/p263
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024