Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 16–26
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-16-26
(Mi timm1546)
 

This article is cited in 5 scientific papers (total in 5 papers)

Shilla distance-regular graphs with $b_2 = sc_2$

I. N. Belousovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (195 kB) Citations (5)
References:
Abstract: A Shilla graph is a distance-regular graph $\Gamma$ of diameter 3 whose second eigenvalue is $a=a_3$. A Shilla graph has intersection array $\{ab,(a+1)(b-1),b_2;1,c_2,a(b-1)\}$. J. Koolen and J. Park showed that, for a given number $b$, there exist only finitely many Shilla graphs. They also found all possible admissible intersection arrays of Shilla graphs for $b\in \{2,3\}$. Earlier the author together with A.A. Makhnev studied Shilla graphs with $b_2=c_2$. In the present paper, Shilla graphs with $b_2=sc_2$, where $s$ is an integer greater than $1$, are studied. For Shilla graphs satisfying this condition and such that their second nonprincipal eigenvalue is $-1$, five infinite series of admissible intersection arrays are found. It is shown that, in the case of Shilla graphs without triangles in which $b_2=sc_2$ and $b<170$, only six admissible intersection arrays are possible. For a $Q$-polynomial Shilla graph with $b_2=sc_2$, admissible intersection arrays are found in the cases $b=4$ and $b=5$, and this result is used to obtain a list of admissible intersection arrays of Shilla graphs for $b\in\{4,5\}$ in the general case.
Keywords: distance-regular graph, graph automorphism.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
This work was supported by the Russian Science Foundation (project no. 14-11-00061-П).
Received: 20.02.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 307, Issue 1, Pages S23–S33
DOI: https://doi.org/10.1134/S0081543819070034
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: I. N. Belousov, “Shilla distance-regular graphs with $b_2 = sc_2$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 16–26; Proc. Steklov Inst. Math. (Suppl.), 307, suppl. 1 (2019), S23–S33
Citation in format AMSBIB
\Bibitem{Bel18}
\by I.~N.~Belousov
\paper Shilla distance-regular graphs with $b_2 = sc_2$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 16--26
\mathnet{http://mi.mathnet.ru/timm1546}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-16-26}
\elib{https://elibrary.ru/item.asp?id=35511271}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 307
\issue , suppl. 1
\pages S23--S33
\crossref{https://doi.org/10.1134/S0081543819070034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451634900002}
Linking options:
  • https://www.mathnet.ru/eng/timm1546
  • https://www.mathnet.ru/eng/timm/v24/i3/p16
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :68
    References:36
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024