Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 3, Pages 27–33
DOI: https://doi.org/10.21538/0134-4889-2018-24-3-27-33
(Mi timm1547)
 

Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$

E. V. Berestova

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Let $\mathfrak{M}_{\sigma,n}^p$, $p>0$, be a set of entire functions $f$ of $n$ complex variables with exponential type $\sigma=(\sigma_1,\ldots,\sigma_n)$, $\sigma_k>0$, such that their restrictions to $\mathbb{R}^n$ belong to $L^p(\mathbb{R}^n)$. In 1937 Plancherel and Polya showed that $\sum_{k \in \mathbb{Z}^n}|f(k)|^p \le c_p(\sigma, n) \|f\|^p_{L^p(\mathbb{R}^n)}$ for $f\in \mathfrak{M}_{\sigma,n}^p$, where $c_p(\sigma, n)$ is a finite constant. We study the Plancherel-Polya inequality for $p=2$. If $0<\sigma_k\le \pi$, then, by the Whittaker-Kotelnikov-Shannon theorem and its generalization to the multidimensional case established by Plancherel and Polya, we have $c_2(\sigma, n)=1$ and any function $f\in \mathfrak{M}_{\sigma,n}^2$ is extremal. In the general case, we prove that $c_2(\sigma, n)=\prod_{k = 1}^{n}\left\lceil~\sigma_k/\pi \right\rceil~$ and describe the class of extremal functions. We also write the dual problem $\big|\sum_{k \in \mathbb{Z}^n} (g\ast g)(k)\big| \le d_2(\sigma,n) \|g\|_2^2$, $g \in ~L^2\left(\Omega\right)$, prove that $c_2(\sigma,n)=d_2(\sigma,n)$, and describe the class of extremal functions.
Keywords: Plancherel-Polya inequality, Paley-Wiener space, entire function of exponential type, Fourier transform.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00336
Ural Federal University named after the First President of Russia B. N. Yeltsin 02.A03.21.0006
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 23.06.2018
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D10, 30D15, 42A99
Language: Russian
Citation: E. V. Berestova, “Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 3, 2018, 27–33
Citation in format AMSBIB
\Bibitem{Ber18}
\by E.~V.~Berestova
\paper Plancherel-Polya inequality for entire functions of exponential type in $L^2(\mathbb{R}^n)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 3
\pages 27--33
\mathnet{http://mi.mathnet.ru/timm1547}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-3-27-33}
\elib{https://elibrary.ru/item.asp?id=35511272}
Linking options:
  • https://www.mathnet.ru/eng/timm1547
  • https://www.mathnet.ru/eng/timm/v24/i3/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :74
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024