Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 40–45
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-40-45
(Mi timm1521)
 

This article is cited in 5 scientific papers (total in 5 papers)

Characterization of optimal trajectories in $\mathbb {R}^3$

V. I. Berdyshev

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (170 kB) Citations (5)
References:
Abstract: We characterize the set of all trajectories $\mathcal T$ of an object $t$ moving in a given corridor $Y$ that are furthest away from a family $\mathbb{S}=\{S\}$ of fixed unfriendly observers. Each observer is equipped with a convex open scanning cone $K(S)$ with vertex $S$. There are constraints on the multiplicity of covering the corridor $Y$ by the cones $K$ and on the “thickness” of the cones. In addition, pairs $S$, $S'$ for which $[S,S']\subset (K(S)\cap K(S'))$ are not allowed. The original problem $\max_{\mathcal T}\min\{ d(t,S):\ t\in \mathcal T,\ S\in \mathbb S\},$ where $d(t,S)=\|t-S\|$ for $t\in K(S)$ and $d(t,S)=+\infty$ for $t\not\in K(S)$, is reduced to the problem of finding an optimal route in a directed graph whose vertices are closed disjoint subsets (boxes) from $Y\backslash \bigcup_{S} K(S)$. Neighboring (adjacent) boxes are separated by some cone $K(S)$. An edge is a part $\mathcal {T}(S)$ of a trajectory $\mathcal T$ that connects neighboring boxes and optimally intersects the cone $K(S)$. The weight of an edge is the deviation of $S$ from $\mathcal {T}(S)$. A route is optimal if it maximizes the minimum weight.
Keywords: navigation, tracking problem, moving object, observer.
Received: 17.04.2018
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 305, Issue 1, Pages S10–S15
DOI: https://doi.org/10.1134/S0081543819040035
Bibliographic databases:
Document Type: Article
UDC: 519.62
MSC: 00A05
Language: Russian
Citation: V. I. Berdyshev, “Characterization of optimal trajectories in $\mathbb {R}^3$”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 40–45; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S10–S15
Citation in format AMSBIB
\Bibitem{Ber18}
\by V.~I.~Berdyshev
\paper Characterization of optimal trajectories in $\mathbb {R}^3$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 40--45
\mathnet{http://mi.mathnet.ru/timm1521}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-40-45}
\elib{https://elibrary.ru/item.asp?id=35060676}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S10--S15
\crossref{https://doi.org/10.1134/S0081543819040035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451633100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073538917}
Linking options:
  • https://www.mathnet.ru/eng/timm1521
  • https://www.mathnet.ru/eng/timm/v24/i2/p40
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024