Abstract:
We characterize the set of all trajectories T of an object t moving in a given corridor Y that are furthest away from a family S={S} of fixed unfriendly observers. Each observer is equipped with a convex open scanning cone K(S) with vertex S. There are constraints on the multiplicity of covering the corridor Y by the cones K and on the “thickness” of the cones. In addition, pairs S, S′ for which [S,S′]⊂(K(S)∩K(S′)) are not allowed. The original problem maxTmin{d(t,S):t∈T,S∈S}, where d(t,S)=‖t−S‖ for t∈K(S) and d(t,S)=+∞ for t∉K(S), is reduced to the problem of finding an optimal route in a directed graph whose vertices are closed disjoint subsets (boxes) from Y∖⋃SK(S). Neighboring (adjacent) boxes are separated by some cone K(S). An edge is a part T(S) of a trajectory T that connects neighboring boxes and optimally intersects the cone K(S). The weight of an edge is the deviation of S from T(S). A route is optimal if it maximizes the minimum weight.
\Bibitem{Ber18}
\by V.~I.~Berdyshev
\paper Characterization of optimal trajectories in $\mathbb {R}^3$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 40--45
\mathnet{http://mi.mathnet.ru/timm1521}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-40-45}
\elib{https://elibrary.ru/item.asp?id=35060676}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S10--S15
\crossref{https://doi.org/10.1134/S0081543819040035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451633100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073538917}
Linking options:
https://www.mathnet.ru/eng/timm1521
https://www.mathnet.ru/eng/timm/v24/i2/p40
This publication is cited in the following 5 articles:
M. I. Gomoyunov, N. Yu. Lukoyanov, “Minimax solutions of Hamilton–Jacobi equations in dynamic optimization problems for hereditary systems”, Russian Math. Surveys, 79:2 (2024), 229–324
V. N. Ushakov, A. A. Ershov, “K konstruirovaniyu reshenii igrovoi zadachi s fiksirovannym momentom okonchaniya”, Tr. IMM UrO RAN, 30, no. 3, 2024, 255–273
Vladimir N. Ushakov, Aleksandr M. Tarasev, Andrei V. Ushakov, “Minimaksnaya differentsialnaya igra s fiksirovannym momentom okonchaniya”, MTIP, 16:3 (2024), 77–112
Vladimir N. Ushakov, Aleksandr M. Tarasev, “Igrovaya zadacha sblizheniya nelineinoi upravlyaemoi sistemy”, MTIP, 15:2 (2023), 122–139
I. V. Yuyukin, “OPTIMAL SPLINE TRAJECTORY OF THE SHIP INFORMATIVE ROUTE IN THE MAP-AIDED NAVIGATION”, jour, 14:2 (2022), 230