Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2018, Volume 24, Number 2, Pages 34–39
DOI: https://doi.org/10.21538/0134-4889-2018-24-2-34-39
(Mi timm1520)
 

Codes in Shilla distance-regular graphs

I. N. Belousovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: Let $\Gamma$ be a distance-regular graph of diameter $3$ containing a maximal 1-code $C$, which is locally regular and perfect with respect to the last neighborhood. Then $\Gamma$ has intersection array $\{a(p+1),cp,a+1;1,c,ap\}$ or $\{a(p+1),(a+1)p,c;1,c,ap\}$, where $a=a_3$, $c=c_2$, and $p=p^3_{33}$ (Juri$\check{\mathrm{s}}$i$\acute{\mathrm{c}}$, Vidali). In the first case, $\Gamma$ has eigenvalue $\theta_2=-1$ and the graph $\Gamma_3$ is pseudogeometric for $GQ(p+1,a)$. In the second case, $\Gamma$ is a Shilla graph. We study Shilla graphs in which every two vertices at distance 2 belong to a maximal $1$-code. It is proved that, in the case $\theta_2=-1$, a graph with the specified property is either the Hamming graph $H(3,3)$ or a Johnson graph. We find necessary conditions for the existence of $Q$-polynomial Shilla graphs in which any two vertices at distance 3 lie in a maximal 1-code. In particular, we find two infinite families of feasible intersection arrays of $Q$-polynomial graphs with the specified property: $\{b(b^2-3b)/2,(b-2)(b-1)^2/2,(b-2)t/2;1,bt/2,(b^2-3b)(b-1)/2\}$ (graphs with $p^3_{33}=0$) and $\{b^2(b-4)/2,(b^2-4b+2)(b-1)/2,(b-2)l/2;1,bl/2,(b^2-4b)(b-1)/2\}$ (graphs with $p^3_{33}=1$).
Keywords: distance-regular graph, graph automorphism.
Funding agency Grant number
Russian Science Foundation 14-11-00061-П
Received: 25.12.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, Volume 305, Issue 1, Pages S4–S9
DOI: https://doi.org/10.1134/S0081543819040023
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: I. N. Belousov, “Codes in Shilla distance-regular graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 2, 2018, 34–39; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S4–S9
Citation in format AMSBIB
\Bibitem{Bel18}
\by I.~N.~Belousov
\paper Codes in Shilla distance-regular graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2018
\vol 24
\issue 2
\pages 34--39
\mathnet{http://mi.mathnet.ru/timm1520}
\crossref{https://doi.org/10.21538/0134-4889-2018-24-2-34-39}
\elib{https://elibrary.ru/item.asp?id=35060675}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 305
\issue , suppl. 1
\pages S4--S9
\crossref{https://doi.org/10.1134/S0081543819040023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000451633100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073418038}
Linking options:
  • https://www.mathnet.ru/eng/timm1520
  • https://www.mathnet.ru/eng/timm/v24/i2/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024