Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 7–17
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-7-17
(Mi timm1462)
 

This article is cited in 5 scientific papers (total in 5 papers)

The volume of a hyperbolic tetrahedron with symmetry group S4S4

N. V. Abrosimovab, B. Vuong Huuba

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
Full-text PDF (225 kB) Citations (5)
References:
Abstract: The problem of calculating the volume of a hyperbolic tetrahedron of general form was solved in a number of works by G. Sforza and other authors. The formulas obtained are rather cumbersome. It is known that if a polyhedron has nontrivial symmetry, then the volume formula is essentially simplified. This phenomenon was discovered by Lobachevsky, who found the volume of an ideal tetrahedron. Later, J. Milnor expressed the corresponding volume as the sum of three Lobachevsky functions. In this paper we consider compact hyperbolic tetrahedra having the symmetry group S4S4, which is generated by a mirror-rotational symmetry of the fourth order. The latter symmetry is the composition of rotation by the angle of π/2π/2 about an axis passing through the middles of two opposite edges and reflection with respect to a plane perpendicular to this axis and passing through the middles of the remaining four edges. We establish necessary and sufficient conditions for the existence of such tetrahedra in H3. Then we find relations between their dihedral angles and edge lengths in the form of a cosine law. Finally, we obtain exact integral formulas expressing the hyperbolic volume of the tetrahedra in terms of the edge lengths.
Keywords: hyperbolic tetrahedron, symmetry group, reflection followed by a rotation, hyperbolic volume.
Received: 15.06.2017
Bibliographic databases:
Document Type: Article
UDC: 514.132
Language: Russian
Citation: N. V. Abrosimov, B. Vuong Huu, “The volume of a hyperbolic tetrahedron with symmetry group S4”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 7–17
Citation in format AMSBIB
\Bibitem{AbrVuo17}
\by N.~V.~Abrosimov, B.~Vuong Huu
\paper The volume of a hyperbolic tetrahedron with symmetry group $S_4$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 7--17
\mathnet{http://mi.mathnet.ru/timm1462}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-7-17}
\elib{https://elibrary.ru/item.asp?id=30713955}
Linking options:
  • https://www.mathnet.ru/eng/timm1462
  • https://www.mathnet.ru/eng/timm/v23/i4/p7
  • This publication is cited in the following 5 articles:
    1. N. Abrosimov, B. Vuong, “The volume of a spherical antiprism with S2n symmetry”, Sib. elektron. matem. izv., 18:2 (2021), 1165–1179  mathnet  crossref
    2. Nikolay Abrosimov, Bao Vuong, “Explicit volume formula for a hyperbolic tetrahedron in terms of edge lengths”, J. Knot Theory Ramifications, 30:10 (2021)  crossref
    3. V. A. Krasnov, “Ob'emy mnogogrannikov v neevklidovykh prostranstvakh postoyannoi krivizny”, Algebra, geometriya i topologiya, SMFN, 66, no. 4, Rossiiskii universitet druzhby narodov, M., 2020, 558–679  mathnet  crossref
    4. V. A. Krasnov, “O primenenii sovremennogo dokazatelstva formuly Sfortsa k vychisleniyu ob'emov giperbolicheskikh tetraedrov spetsialnogo vida”, Trudy Matematicheskogo instituta im. S.M. Nikolskogo RUDN, SMFN, 65, no. 4, Rossiiskii universitet druzhby narodov, M., 2019, 623–634  mathnet  crossref
    5. N. Abrosimov, B. Vuong, “The volume of a compact hyperbolic antiprism”, J. Knot Theory Ramifications, 27:13, SI (2018), 1842010  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:584
    Full-text PDF :128
    References:53
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025