Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 4, Pages 18–31
DOI: https://doi.org/10.21538/0134-4889-2017-23-4-18-31
(Mi timm1463)
 

This article is cited in 10 scientific papers (total in 10 papers)

Classification of links of small complexity in a thickened torus

A. A. Akimovaa, S. V. Matveevbc, V. V. Tarkaevbc

a South Ural State University, Chelyabinsk, 454080 Russia
b Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620990 Russia
c Chelyabinsk State University, Chelyabinsk, 454001 Russia
References:
Abstract: The paper contains the table of links in the thickened torus $T^2\times I$ admitting diagrams with at most four crossings. The links are constructed by a three-step process. First we enumerate all abstract regular graphs of degree 4 with at most four vertices. Then we consider all nonequivalent embeddings of these graphs into $T^2$. After that each vertex of each of the obtained graphs is replaced by a crossing of one of the two possible types, when a segment of the graph lies lower or above another segment. The words “above” and “lower” are understood in the sense of the coordinate of the corresponding point in the interval $I$. As a result, we obtain a family of diagrams of knots and links in $T^2 \times I$. We propose a number of artificial tricks that essentially reduce the enumeration and offer a rigorous proof of the completeness of the table. A generalized version of the Kauffman polynomial is used to prove that all the links are different.
Keywords: link, thickened torus, link table.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00690
Received: 31.08.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages 12–24
DOI: https://doi.org/10.1134/S008154381809002X
Bibliographic databases:
Document Type: Article
UDC: 515.162
MSC: 57M99
Language: Russian
Citation: A. A. Akimova, S. V. Matveev, V. V. Tarkaev, “Classification of links of small complexity in a thickened torus”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 4, 2017, 18–31; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 12–24
Citation in format AMSBIB
\Bibitem{AkiMatTar17}
\by A.~A.~Akimova, S.~V.~Matveev, V.~V.~Tarkaev
\paper Classification of links of small complexity in a thickened torus
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 4
\pages 18--31
\mathnet{http://mi.mathnet.ru/timm1463}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-4-18-31}
\elib{https://elibrary.ru/item.asp?id=30713956}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages 12--24
\crossref{https://doi.org/10.1134/S008154381809002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521700002}
Linking options:
  • https://www.mathnet.ru/eng/timm1463
  • https://www.mathnet.ru/eng/timm/v23/i4/p18
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :91
    References:37
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024