Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 292–299
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-292-299
(Mi timm1459)
 

Uniform Lebesgue constants of local spline approximation

V. T. Shevaldin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: Let a function $\varphi\in C^1[-h,h]$ be such that $\varphi(0)=\varphi'(0)=0$, $\varphi(-x)=\varphi(x)$ for $x\in [0;h])$, and $\varphi(x)$ is nondecreasing on $[0;h]$. For any function $f:\ \mathbb R\to \mathbb R$, we consider local splines of the form
$$S(x)=S_{\varphi}(f,x)=\sum_{j\in \mathbb Z} y_j B_{\varphi}\Big( x+\frac{3h}{2}-jh\Big)\quad (x\in \mathbb R),$$
where $y_j=f(jh)$, $m(h)>0$, and
$$B_{\varphi}(x)=m(h)\left\{
\begin{array}{cl}\varphi(x),& x\in [0;h],\\ 2\varphi(h)-\varphi(x-h)-\varphi(2h-x),& x\in [h;2h], \\ \varphi(3h-x),& x\in [2h;3h],\\ 0, & x\not\in [0;3h]. \end{array}
\right.$$
These splines become parabolic, exponential, trigonometric, etc., under the corresponding choice of the function $\varphi$. We study the uniform Lebesgue constants $L_{\varphi}=\|S\|_C^C$ (the norms of linear operators from $C$ to $C$) of these splines as functions depending on $\varphi$ and $h$. In some cases, the constants are calculated exactly on the axis $\mathbb R$ and on a closed interval of the real line (under a certain choice of boundary conditions from the spline $S_{\varphi}(f,x)$).
Keywords: Lebesgue constants, local splines, three-point system.
Funding agency Grant number
Russian Science Foundation 14-11-00702
Received: 02.06.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages 196–202
DOI: https://doi.org/10.1134/S0081543818090201
Bibliographic databases:
Document Type: Article
UDC: 519.65
MSC: 41A15
Language: Russian
Citation: V. T. Shevaldin, “Uniform Lebesgue constants of local spline approximation”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 292–299; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 196–202
Citation in format AMSBIB
\Bibitem{She17}
\by V.~T.~Shevaldin
\paper Uniform Lebesgue constants of local spline approximation
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 292--299
\mathnet{http://mi.mathnet.ru/timm1459}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-292-299}
\elib{https://elibrary.ru/item.asp?id=29938021}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages 196--202
\crossref{https://doi.org/10.1134/S0081543818090201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100027}
Linking options:
  • https://www.mathnet.ru/eng/timm1459
  • https://www.mathnet.ru/eng/timm/v23/i3/p292
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :45
    References:38
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024