Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 280–291
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-280-291
(Mi timm1458)
 

Solvability of the Generalized Traveling Salesman Problem in the class of quasi- and pseudopyramidal tours

M. Yu. Khachayabc, E. D. Neznakhinaca

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Omsk State Technical University
c Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider the general setting of the Generalized Traveling Salesman Problem (GTSP), where, for a given weighted graph and a partition of its nodes into clusters (or megalopolises), it is required to find a cheapest cyclic tour visiting each cluster exactly once. Generalizing the classical notion of pyramidal tour, we introduce quasi- and pseudopyramidal tours for the GTSP and show that, for an arbitrary instance of the problem with $n$ nodes and $k$ clusters, optimal $l$-quasi-pyramidal and $l$-pseudopyramidal tours can be found in time $O(4^l n^3)$ and $O(2^lk^{l+4}n^3)$, respectively. As a consequence, we prove that the GTSP belongs to the class FTP with respect to parametrizations given by such types of routes. Furthermore, we establish the polynomial-time solvability of the geometric subclass of the problem known in the literature as GTSP-GC, where an arbitrary statement is subject to the additional constraint $H\le 2$ on the height of the grid defining the clusters.
Keywords: Generalized Traveling Salesman Problem (GTSP), polynomially solvable subclass, quasi-pyramidal tour, pseudopyramidal tour.
Funding agency Grant number
Russian Science Foundation 14-11-00109
Received: 29.05.2017
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
MSC: 90C27, 90C59, 90B06
Language: Russian
Citation: M. Yu. Khachay, E. D. Neznakhina, “Solvability of the Generalized Traveling Salesman Problem in the class of quasi- and pseudopyramidal tours”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 280–291
Citation in format AMSBIB
\Bibitem{KhaNez17}
\by M.~Yu.~Khachay, E.~D.~Neznakhina
\paper Solvability of the Generalized Traveling Salesman Problem in the class of quasi- and pseudopyramidal tours
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 280--291
\mathnet{http://mi.mathnet.ru/timm1458}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-280-291}
\elib{https://elibrary.ru/item.asp?id=29938020}
Linking options:
  • https://www.mathnet.ru/eng/timm1458
  • https://www.mathnet.ru/eng/timm/v23/i3/p280
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :57
    References:42
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024