Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2017, Volume 23, Number 3, Pages 171–181
DOI: https://doi.org/10.21538/0134-4889-2017-23-3-171-181
(Mi timm1447)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computational complexity for the problem of optimal intersections of straight line segments by disks

K. S. Kobylkinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (241 kB) Citations (1)
References:
Abstract: Computational complexity and exact polynomial algorithms are reported for the problem of stabbing a set of straight line segments with a least cardinality set of disks of fixed radii $r>0$, where the set of segments forms a straight line drawing $G=(V,E)$ of a planar graph without edge crossings. Similar geometric problems arise in network security applications (Agarwal et al., 2013). We establish the strong NP-hardness of the problem for edge sets of Delaunay triangulations, Gabriel graphs, and other subgraphs (which are often used in network design) for $r\in [d_{\min},\eta d_{\max}]$ and some constant $\eta$, where $d_{\max}$ and $d_{\min}$ are the Euclidean lengths of the longest and shortest graph edges, respectively.
Keywords: computational complexity, Hitting Set Problem, Continuous Disk Cover problem, Delaunay triangulations.
Funding agency Grant number
Russian Science Foundation 14-11-00109
Received: 19.05.2017
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 303, Issue 1, Pages 146–155
DOI: https://doi.org/10.1134/S0081543818090158
Bibliographic databases:
Document Type: Article
UDC: 519.856
MSC: 90C15
Language: Russian
Citation: K. S. Kobylkin, “Computational complexity for the problem of optimal intersections of straight line segments by disks”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 3, 2017, 171–181; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 146–155
Citation in format AMSBIB
\Bibitem{Kob17}
\by K.~S.~Kobylkin
\paper Computational complexity for the problem of optimal intersections of straight line segments by disks
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2017
\vol 23
\issue 3
\pages 171--181
\mathnet{http://mi.mathnet.ru/timm1447}
\crossref{https://doi.org/10.21538/0134-4889-2017-23-3-171-181}
\elib{https://elibrary.ru/item.asp?id=28409376}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 303
\issue , suppl. 1
\pages 146--155
\crossref{https://doi.org/10.1134/S0081543818090158}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453521100015}
Linking options:
  • https://www.mathnet.ru/eng/timm1447
  • https://www.mathnet.ru/eng/timm/v23/i3/p171
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :54
    References:39
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024