Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 4, Pages 53–63
DOI: https://doi.org/10.21538/0134-4889-2016-22-4-53-63
(Mi timm1353)
 

One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials

A. G. Babenkoa, T. Z. Naumab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
References:
Abstract: We consider the generalized Poisson kernel $\Pi_{q,\alpha}=\cos(\alpha \pi/2)P +\sin(\alpha\pi/2)Q$ with $q\in(-1,1)$ and $\alpha\in\mathbb{R}$, which is a linear combination of the Poisson kernel $P(t)=1/2+\sum_{k=1}^\infty q^k\cos{kt}$ and the conjugate Poisson kernel $Q(t)=\sum\nolimits_{k=1}^\infty q^k\sin kt$. The values of the best upper and lower integral approximations of the kernel $\Pi_{q,\alpha}$ by trigonometric polynomials of order not exceeding a given number are found. The corresponding polynomials of the best one-sided approximation are obtained.
Keywords: constrained approximation, trigonometric polynomials, generalized Poisson kernel.
Funding agency Grant number
Russian Science Foundation 14-11-00702
Received: 26.09.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, Volume 300, Issue 1, Pages 38–48
DOI: https://doi.org/10.1134/S0081543818020050
Bibliographic databases:
Document Type: Article
UDC: 517.518.834
MSC: 42A10, 41A29
Language: Russian
Citation: A. G. Babenko, T. Z. Naum, “One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 53–63; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 38–48
Citation in format AMSBIB
\Bibitem{BabNau16}
\by A.~G.~Babenko, T.~Z.~Naum
\paper One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 4
\pages 53--63
\mathnet{http://mi.mathnet.ru/timm1353}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-4-53-63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3590921}
\elib{https://elibrary.ru/item.asp?id=27350118}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2018
\vol 300
\issue , suppl. 1
\pages 38--48
\crossref{https://doi.org/10.1134/S0081543818020050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000433518400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047556176}
Linking options:
  • https://www.mathnet.ru/eng/timm1353
  • https://www.mathnet.ru/eng/timm/v22/i4/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :78
    References:48
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024