|
One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials
A. G. Babenkoa, T. Z. Naumab a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
Abstract:
We consider the generalized Poisson kernel Πq,α=cos(απ/2)P+sin(απ/2)Q with q∈(−1,1) and α∈R, which is a linear combination of the Poisson kernel P(t)=1/2+∑∞k=1qkcoskt and the conjugate Poisson kernel Q(t)=∑∞k=1qksinkt. The values of the best upper and lower integral approximations of the kernel Πq,α by trigonometric polynomials of order not exceeding a given number are found. The corresponding polynomials of the best one-sided approximation are obtained.
Keywords:
constrained approximation, trigonometric polynomials, generalized Poisson kernel.
Received: 26.09.2016
Citation:
A. G. Babenko, T. Z. Naum, “One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 53–63; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 38–48
Linking options:
https://www.mathnet.ru/eng/timm1353 https://www.mathnet.ru/eng/timm/v22/i4/p53
|
Statistics & downloads: |
Abstract page: | 378 | Full-text PDF : | 92 | References: | 56 | First page: | 5 |
|