|
One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials
A. G. Babenkoa, T. Z. Naumab a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
Abstract:
We consider the generalized Poisson kernel $\Pi_{q,\alpha}=\cos(\alpha \pi/2)P +\sin(\alpha\pi/2)Q$ with $q\in(-1,1)$ and $\alpha\in\mathbb{R}$, which is a linear combination of the Poisson kernel $P(t)=1/2+\sum_{k=1}^\infty q^k\cos{kt}$ and the conjugate Poisson kernel $Q(t)=\sum\nolimits_{k=1}^\infty q^k\sin kt$. The values of the best upper and lower integral approximations of the kernel $\Pi_{q,\alpha}$ by trigonometric polynomials of order not exceeding a given number are found. The corresponding polynomials of the best one-sided approximation are obtained.
Keywords:
constrained approximation, trigonometric polynomials, generalized Poisson kernel.
Received: 26.09.2016
Citation:
A. G. Babenko, T. Z. Naum, “One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 53–63; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 38–48
Linking options:
https://www.mathnet.ru/eng/timm1353 https://www.mathnet.ru/eng/timm/v22/i4/p53
|
Statistics & downloads: |
Abstract page: | 330 | Full-text PDF : | 78 | References: | 48 | First page: | 5 |
|