Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 4, Pages 81–86
DOI: https://doi.org/10.21538/0134-4889-2016-22-4-81-86
(Mi timm1355)
 

A condition for a finite group to be a Schmidt group

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: Let $G$ be a finite group $G$, and let $\pi$ be a set of primes such that $2\in \pi$. We prove that if all maximal subgroups of $G$ are $\pi$-closed and $G$ itself is not $\pi$-closed then $G$ is a Schmidt group. The proof employs the author's earlier results on the properties of pairs $(G,\pi)$ where $G$ is a simple minimal non-$\pi$-closed group and $\pi$ is arbitrary.
Keywords: finite group, Schmidt group, $\pi$-closed group, simple group, maximal subgroup.
Received: 31.05.2016
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20E28, 20D06, 20D08
Language: Russian
Citation: V. A. Belonogov, “A condition for a finite group to be a Schmidt group”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 81–86
Citation in format AMSBIB
\Bibitem{Bel16}
\by V.~A.~Belonogov
\paper A condition for a finite group to be a Schmidt group
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 4
\pages 81--86
\mathnet{http://mi.mathnet.ru/timm1355}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-4-81-86}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3590923}
\elib{https://elibrary.ru/item.asp?id=27350123}
Linking options:
  • https://www.mathnet.ru/eng/timm1355
  • https://www.mathnet.ru/eng/timm/v22/i4/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025