Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 12–22
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-12-22
(Mi timm1317)
 

Finite simple groups in which all maximal subgroups are $\pi$-closed. II

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We continue the study of pairs $(G,\pi)$, where $G$ is a finite simple nonabelian group and $\pi$ a set of primes, such that $G$ has only $\pi$-closed maximal subgroups but is not $\pi$-closed itself. Using the results of the first paper from the series, we give a list of such pairs $(G,\pi)$ in the case when $G$ is different from the groups $PSL_r(q)$ and $PSU_r(q)$ with prime odd $r$ and $E_8(q)$, where $q$ is a prime power.
Keywords: finite group, simple group, $\pi$-closed group, maximal subgroup.
Funding agency Grant number
Ural Branch of the Russian Academy of Sciences 15-16-1-5
Received: 29.12.2015
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20D06, 20D08, 20E28
Language: Russian
Citation: V. A. Belonogov, “Finite simple groups in which all maximal subgroups are $\pi$-closed. II”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 12–22
Citation in format AMSBIB
\Bibitem{Bel16}
\by V.~A.~Belonogov
\paper Finite simple groups in which all maximal subgroups are $\pi$-closed. II
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 12--22
\mathnet{http://mi.mathnet.ru/timm1317}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-12-22}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555706}
\elib{https://elibrary.ru/item.asp?id=26530873}
Linking options:
  • https://www.mathnet.ru/eng/timm1317
  • https://www.mathnet.ru/eng/timm/v22/i3/p12
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :71
    References:49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024