Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 3–11
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-3-11
(Mi timm1316)
 

This article is cited in 1 scientific paper (total in 1 paper)

Finite groups with Hall Schmidt subgroups

E. N. Bazhanova, V. A. Vedernikov

Moscow City University
Full-text PDF (191 kB) Citations (1)
References:
Abstract: We obtain a complete description for the structure of a finite group in which any Schmidt subgroup is a Hall subgroup.
Keywords: finite group, Schmidt group, Frobenius group, Hall subgroup, hypercenter of a group.
Received: 20.07.2015
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20DXX
Language: Russian
Citation: E. N. Bazhanova, V. A. Vedernikov, “Finite groups with Hall Schmidt subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 3–11
Citation in format AMSBIB
\Bibitem{BazVed16}
\by E.~N.~Bazhanova, V.~A.~Vedernikov
\paper Finite groups with Hall Schmidt subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 3--11
\mathnet{http://mi.mathnet.ru/timm1316}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-3-11}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555705}
\elib{https://elibrary.ru/item.asp?id=26530872}
Linking options:
  • https://www.mathnet.ru/eng/timm1316
  • https://www.mathnet.ru/eng/timm/v22/i3/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :85
    References:54
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024