Abstract:
The problem of guaranteed closed-loop guidance by a given time under incomplete information on the initial state is studied for a dynamical control system with delay by means of the method of open-loop control packages. A solvability criterion is proved for this problem in the case of a finite set of admissible initial states. The proposed technique is illustrated by a specific linear control system of differential equations with delay.
Keywords:
control, incomplete information, linear systems with delay.
Citation:
P. G. Surkov, “The problem of closed-loop guidance by a given time for a linear control system with delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 267–276; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 218–227
\Bibitem{Sur16}
\by P.~G.~Surkov
\paper The problem of closed-loop guidance by a given time for a linear control system with delay
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 267--276
\mathnet{http://mi.mathnet.ru/timm1312}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-267-276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559183}
\elib{https://elibrary.ru/item.asp?id=26040843}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 218--227
\crossref{https://doi.org/10.1134/S0081543817020201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018730679}
Linking options:
https://www.mathnet.ru/eng/timm1312
https://www.mathnet.ru/eng/timm/v22/i2/p267
This publication is cited in the following 2 articles:
P. G. Surkov, “Package guidance problem for a fractional-order system”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S212–S230
V. I. Maksimov, P. G. Surkov, “O razreshimosti zadachi garantirovannogo paketnogo navedeniya na sistemu tselevykh mnozhestv”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:3 (2017), 344–354