Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 2, Pages 255–266
DOI: https://doi.org/10.21538/0134-4889-2016-22-2-255-266
(Mi timm1311)
 

This article is cited in 11 scientific papers (total in 11 papers)

The method of characteristics in an identification problem

N. N. Subbotinaab, E. A. Krupennikovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Mathematics and Computer Science, Ural Federal University, Ekaterinburg
References:
Abstract: We consider the problem of identifying the parameters of a dynamic system from a noisy history of measuring the phase trajectory. We propose a new approach to the solution based on the construction of an auxiliary optimal control problem such that its extremals approximate the measurement history with a given accuracy. Using the solutions of the corresponding characteristic system, we obtain estimates for the residual, which is the difference between the coordinates of the extremals and the measurements of the phase trajectory. An estimate for the result of identifying the parameters of the dynamic system is obtained. An illustrative numerical example is given.
Keywords: identification, residual functional, Hamilton-Jacobi-Bellman equation, characteristic system.
Received: 09.03.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 299, Issue 1, Pages 205–216
DOI: https://doi.org/10.1134/S008154381709022X
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N90, 49L20, 93B30
Language: Russian
Citation: N. N. Subbotina, E. A. Krupennikov, “The method of characteristics in an identification problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 255–266; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 205–216
Citation in format AMSBIB
\Bibitem{SubKru16}
\by N.~N.~Subbotina, E.~A.~Krupennikov
\paper The method of characteristics in an identification problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 255--266
\mathnet{http://mi.mathnet.ru/timm1311}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-255-266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559182}
\elib{https://elibrary.ru/item.asp?id=26040842}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 299
\issue , suppl. 1
\pages 205--216
\crossref{https://doi.org/10.1134/S008154381709022X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425144600021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042170034}
Linking options:
  • https://www.mathnet.ru/eng/timm1311
  • https://www.mathnet.ru/eng/timm/v22/i2/p255
  • This publication is cited in the following 11 articles:
    1. N. N. Subbotina, E. A. Krupennikov, “Weak* Approximations to the Solution of a Dynamic Reconstruction Problem”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S142–S152  mathnet  crossref  crossref  isi  elib
    2. N. N. Subbotina, E. A. Krupennikov, “Weak* Solution to a Dynamic Reconstruction Problem”, Proc. Steklov Inst. Math., 315 (2021), 233–246  mathnet  crossref  crossref  isi
    3. Vladimir Turetsky, “Two Inverse Problems Solution by Feedback Tracking Control”, Axioms, 10:3 (2021), 137  crossref
    4. E. A. Krupennikov, “Properties of solutions of dynamic control reconstruction problems”, J. Phys.: Conf. Ser., 1864:1 (2021), 012034  crossref
    5. Nina N. Subbotina, “On control reconstructions to management problems”, Contributions to Game Theory and Management, 13 (2020), 402–414  mathnet
    6. Evgenii Aleksandrovitch Krupennikov, Lecture Notes in Control and Information Sciences - Proceedings, Stability, Control and Differential Games, 2020, 239  crossref
    7. Nina Subbotina, COMPUTATIONAL MECHANICS AND MODERN APPLIED SOFTWARE SYSTEMS (CMMASS'2019), 2181, COMPUTATIONAL MECHANICS AND MODERN APPLIED SOFTWARE SYSTEMS (CMMASS'2019), 2019, 020019  crossref
    8. N. N. Subbotina, “Hamiltonian systems in dynamic reconstruction problems”, IFAC-PapersOnLine, 51:32 (2018), 136–140  crossref  isi
    9. E. A. Krupennikov, “A new approximate method for construction of the normal control”, IFAC-PapersOnLine, 51:32 (2018), 343–348  crossref  isi
    10. E. A. Krupennikov, “Solution of inverse problems for control systems with large control parameter dimension”, IFAC-PapersOnLine, 51:32 (2018), 434–438  crossref  isi
    11. Nina Nikolaevna Subbotina, Evgeniy Aleksandrovitch Krupennikov, AIP Conference Proceedings, 1997, 2018, 020006  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :112
    References:92
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025