Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 2, Pages 199–210
DOI: https://doi.org/10.21538/0134-4889-2016-22-2-199-210
(Mi timm1305)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a guaranteed guidance problem under incomplete information

V. I. Maksimov

Lomonosov Moscow State University
Full-text PDF (200 kB) Citations (1)
References:
Abstract: We discuss the problem of guaranteed guidance of a linear control system by a fixed time under the assumption that the system is subject to an unknown disturbance. We consider the case when a part of state coordinates are measured and the set of unknown initial states is finite. We specify a solution algorithm based on the combination of the package approach, the theory of dynamic inversion, and the extremal shift method.
Keywords: guidance problem, linear system.
Funding agency Grant number
Russian Science Foundation 14-01-00539
Received: 10.02.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 297, Issue 1, Pages 147–158
DOI: https://doi.org/10.1134/S0081543817050157
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49J35, 91A24
Language: Russian
Citation: V. I. Maksimov, “On a guaranteed guidance problem under incomplete information”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 199–210; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 147–158
Citation in format AMSBIB
\Bibitem{Mak16}
\by V.~I.~Maksimov
\paper On a guaranteed guidance problem under incomplete information
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 199--210
\mathnet{http://mi.mathnet.ru/timm1305}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-199-210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559176}
\elib{https://elibrary.ru/item.asp?id=26040834}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 297
\issue , suppl. 1
\pages 147--158
\crossref{https://doi.org/10.1134/S0081543817050157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000410252500015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029224745}
Linking options:
  • https://www.mathnet.ru/eng/timm1305
  • https://www.mathnet.ru/eng/timm/v22/i2/p199
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:289
    Full-text PDF :62
    References:52
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024