Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 2, Pages 188–198
DOI: https://doi.org/10.21538/0134-4889-2016-22-2-188-198
(Mi timm1304)
 

This article is cited in 5 scientific papers (total in 5 papers)

Construction of the optimal result function and dispersing lines in time-optimal problems with a nonconvex target set

P. D. Lebedev, A. A. Uspenskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (550 kB) Citations (5)
References:
Abstract: Algorithms for constructing the optimal result function are proposed for a planar time-optimal problem with a circular velocity vectogram and a nonconvex target set with smooth boundary. The algorithms work with the case where the solution of the problem has a complicated (segmented) structure of the singular set. Differentiable dependences are detected for smooth segments of the singular set, which makes it possible to consider and construct these segments as arcs of integral curves. An example of the time-optimal problem is considered, for which the optimal result function and its singular set are calculated numerically. A visualization of the results is implemented.
Keywords: time-optimal problem, dispersing line, nonconvex set, optimal trajectory, differential equation.
Funding agency Grant number
Russian Science Foundation 15-11-10018
Received: 04.03.2016
Bibliographic databases:
Document Type: Article
UDC: 517.977.58
Language: Russian
Citation: P. D. Lebedev, A. A. Uspenskii, “Construction of the optimal result function and dispersing lines in time-optimal problems with a nonconvex target set”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 2, 2016, 188–198
Citation in format AMSBIB
\Bibitem{LebUsp16}
\by P.~D.~Lebedev, A.~A.~Uspenskii
\paper Construction of the optimal result function and dispersing lines in time-optimal problems with a nonconvex target set
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 2
\pages 188--198
\mathnet{http://mi.mathnet.ru/timm1304}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-2-188-198}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559175}
\elib{https://elibrary.ru/item.asp?id=26040833}
Linking options:
  • https://www.mathnet.ru/eng/timm1304
  • https://www.mathnet.ru/eng/timm/v22/i2/p188
  • This publication is cited in the following 5 articles:
    1. Pavel D. Lebedev, Alexander A. Uspenskii, Lecture Notes in Control and Information Sciences - Proceedings, Stability and Control Processes, 2022, 427  crossref
    2. P. D. Lebedev, A. A. Uspenskii, “Postroenie rasseivayuschikh krivykh v odnom klasse zadach bystrodeistviya pri skachkakh krivizny granitsy tselevogo mnozhestva”, Izv. IMI UdGU, 55 (2020), 93–112  mathnet  crossref
    3. P. D. Lebedev, V. N. Ushakov, A. A. Uspenskii, “Numerical methods for constructing suboptimal packings of nonconvex domains with curved boundary”, J. Appl. Industr. Math., 14:4 (2020), 681–692  mathnet  crossref  crossref
    4. P. D. Lebedev, A. A. Uspenskii, “Postroenie resheniya zadachi upravleniya po bystrodeistviyu pri narushenii gladkosti krivizny granitsy tselevogo mnozhestva”, Izv. IMI UdGU, 53 (2019), 98–114  mathnet  crossref  elib
    5. P. D. Lebedev, A. A. Uspenskii, “Algoritmy resheniya zadachi bystrodeistviya s krugovoi vektogrammoi skorostei v neodnorodnoi srede”, Chelyab. fiz.-matem. zhurn., 4:4 (2019), 387–397  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :56
    References:40
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025