Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 197–211 (Mi timm1271)  

This article is cited in 2 scientific papers (total in 2 papers)

On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion

E. F. Lelikovaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (218 kB) Citations (2)
References:
Abstract: We study the asymptotic behavior of the first boundary value problem for a second-order elliptic equation in the case where the small parameter is a factor at only one of the highest derivatives and the limit equation is an ordinary differential equation. Although the limit equation has the same order as the original equation, the problem under consideration is bisingular. We investigate the asymptotic behavior of this problem using the method of matched asymptotic expansions.
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 299, Issue 1, Pages 132–147
DOI: https://doi.org/10.1134/S0081543817090164
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: E. F. Lelikova, “On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 197–211; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 132–147
Citation in format AMSBIB
\Bibitem{Lel16}
\by E.~F.~Lelikova
\paper On the asymptotics of a solution to an equation with a small parameter in a neighborhood of a point of inflexion
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 197--211
\mathnet{http://mi.mathnet.ru/timm1271}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497195}
\elib{https://elibrary.ru/item.asp?id=25655608}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 299
\issue , suppl. 1
\pages 132--147
\crossref{https://doi.org/10.1134/S0081543817090164}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425144600015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042163867}
Linking options:
  • https://www.mathnet.ru/eng/timm1271
  • https://www.mathnet.ru/eng/timm/v22/i1/p197
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :51
    References:58
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024