Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 1, Pages 3–13 (Mi timm1254)  

This article is cited in 3 scientific papers (total in 3 papers)

Finite groups whose prime graphs do not contain triangles. II

O. A. Alekseevaa, A. S. Kondrat'evbc

a Moscow Vitte University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (228 kB) Citations (3)
References:
Abstract: The study of finite groups whose prime graphs do not contain triangles is continued. The main result of the given part of the work is the following theorem: if $G$ is a finite non-solvable group whose prime graph does not contain triangles and $S(G)$ is the greatest solvable normal subgroup in $G$ then $|\pi(G)|\leq 8$ and $|\pi(S(G))|\leq 3$. Furthermore, a detailed description of the structure of a group $G$ satisfying the conditions of the theorem in the case when $\pi(S(G))$ contains a number which does not divide the order of the group $G/S(G)$. It is also constructed an example of a finite solvable group with the Fitting length 5 whose prime graph is 4-cycle. This completes the determination of exact bound for the Fitting length of finite solvable groups whose prime graphs do not contain triangles.
Keywords: finite group, non-solvable group, solvable group, fitting length, prime graph.
Funding agency Grant number
Russian Science Foundation 15-11-10025
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 296, Issue 1, Pages 19–30
DOI: https://doi.org/10.1134/S0081543817020031
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: O. A. Alekseeva, A. S. Kondrat'ev, “Finite groups whose prime graphs do not contain triangles. II”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 1, 2016, 3–13; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 19–30
Citation in format AMSBIB
\Bibitem{AleKon16}
\by O.~A.~Alekseeva, A.~S.~Kondrat'ev
\paper Finite groups whose prime graphs do not contain triangles.~II
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/timm1254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3497178}
\elib{https://elibrary.ru/item.asp?id=25655588}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 296
\issue , suppl. 1
\pages 19--30
\crossref{https://doi.org/10.1134/S0081543817020031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403678000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018768002}
Linking options:
  • https://www.mathnet.ru/eng/timm1254
  • https://www.mathnet.ru/eng/timm/v22/i1/p3
    Cycle of papers
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :95
    References:80
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024