Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 3, Pages 256–267 (Mi timm1217)  

This article is cited in 14 scientific papers (total in 14 papers)

On the p-supersolvability of a finite factorizable group with normal factors

V. S. Monakhova, I. K. Chirikb

a Francisk Skaryna Gomel State University, Faculty of Mathematics
b Gomel Engineering Institute, Ministry of Extraordinary Situations of the Republic of Belarus
References:
Abstract: We obtain "p-analogs" of known criteria for the supersolvability of a finite group G=AB with normal supersolvable subgroups A and B. In addition, new sufficient conditions for the supersolvability of a finite group are found under stronger conditions than the supersolvability of normal factors.
Keywords: finite group, p-supersolvable group, p-solvable group, mnp-group, t-group.
Received: 29.12.2014
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. S. Monakhov, I. K. Chirik, “On the p-supersolvability of a finite factorizable group with normal factors”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 256–267
Citation in format AMSBIB
\Bibitem{MonChi15}
\by V.~S.~Monakhov, I.~K.~Chirik
\paper On the $p$-supersolvability of a finite factorizable group with normal factors
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 256--267
\mathnet{http://mi.mathnet.ru/timm1217}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468108}
\elib{https://elibrary.ru/item.asp?id=24156728}
Linking options:
  • https://www.mathnet.ru/eng/timm1217
  • https://www.mathnet.ru/eng/timm/v21/i3/p256
  • This publication is cited in the following 14 articles:
    1. A. A. Trofimuk, “Finite groups with given systems of propermutable subgroups”, Eurasian Math. J., 15:1 (2024), 91–97  mathnet  crossref
    2. S. V. Balychev, V. I. Murashko, “O vliyanii $\mathfrak{F}$-gipertsentra na strukturu konechnykh multifaktorizuemykh grupp”, Tr. IMM UrO RAN, 30, no. 4, 2024, 55–63  mathnet  crossref  elib
    3. V. S. Monakhov, A. A. Trofimuk, “Remarks on the Supersolvability of a Group with Prime Indices of Some Subgroups”, Math. Notes, 107:2 (2020), 288–295  mathnet  crossref  crossref  mathscinet  isi  elib
    4. V. S. Monakhov, A. A. Trofimuk, “On supersolubility of a group with seminormal subgroups”, Siberian Math. J., 61:1 (2020), 118–126  mathnet  crossref  crossref  isi
    5. A. Trofimuk, “On $p$-nilpotency of finite group with normally embedded maximal subgroups of some Sylow subgroups”, Algebra Discrete Math., 29:1 (2020), 139–146  mathnet  crossref
    6. V. S. Monakhov, A. A. Trofimuk, “On the supersolubility of a group with semisubnormal factors”, J. Group Theory, 23:5 (2020), 893–911  crossref  mathscinet  zmath  isi  scopus
    7. V. S. Monakhov, A. A. Trofimuk, “On the supersolubility of a finite group with ns-supplemented subgroups”, Acta Math. Hung., 160:1 (2020), 161–167  crossref  mathscinet  zmath  isi  scopus
    8. V. S. Monakhov, A. A. Trofimuk, “Finite groups with two supersoluble subgroups”, J. Group Theory, 22:2 (2019), 297–312  crossref  mathscinet  zmath  isi  scopus
    9. V. S. Monakhov, A. A. Trofimuk, “Supersolubility of a finite group with normally embedded maximal subgroups in Sylow subgroups”, Siberian Math. J., 59:5 (2018), 922–930  mathnet  crossref  crossref  isi  elib
    10. V. S. Monakhov, I. K. Chirik, “On the supersoluble residual of a product of subnormal supersoluble subgroups”, Siberian Math. J., 58:2 (2017), 271–280  mathnet  crossref  crossref  isi  elib  elib
    11. V. S. Monakhov, I. K. Chirik, “Konechnye gruppy, faktorizuemye subnormalnymi sverkhrazreshimymi podgruppami”, PFMT, 2016, no. 3(28), 40–46  mathnet
    12. A. F. Vasilev, T. I. Vasileva, E. N. Myslovets, “O konechnykh gruppakh s zadannym normalnym stroeniem”, Sib. elektron. matem. izv., 13 (2016), 897–910  mathnet  crossref
    13. E. N. Myslovets, “$J$-construction of composition formations and products of finite groups”, PFMT, 2016, no. 4(29), 68–73  mathnet
    14. V. S. Monakhov, I. K. Chirik, “O $p$-sverkhrazreshimom koradikale proizvedeniya normalnykh $p$-sverkhrazreshimykh podgrupp”, Tr. In-ta matem., 23:2 (2015), 88–96  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:379
    Full-text PDF :112
    References:85
    First page:16
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025