Abstract:
We find finite almost simple groups with prime graphs all of whose connected components are cliques, i.e., complete graphs. The proof is based on the following fact, which was obtained by the authors and is of independent interest: the prime graph of a finite simple nonabelian group contains two nonadjacent odd vertices that do not divide the order of the outer automorphism group of this group.
Keywords:
finite group, almost simple group, prime graph.
Citation:
M. R. Zinov'eva, A. S. Kondrat'ev, “Finite almost simple groups with prime graphs all of whose connected components are cliques”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 132–141; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 178–188
\Bibitem{ZinKon15}
\by M.~R.~Zinov'eva, A.~S.~Kondrat'ev
\paper Finite almost simple groups with prime graphs all of whose connected components are cliques
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 132--141
\mathnet{http://mi.mathnet.ru/timm1206}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468097}
\elib{https://elibrary.ru/item.asp?id=24156707}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 178--188
\crossref{https://doi.org/10.1134/S0081543816090194}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394441400019}
Linking options:
https://www.mathnet.ru/eng/timm1206
https://www.mathnet.ru/eng/timm/v21/i3/p132
This publication is cited in the following 3 articles:
N. V. Maslova, K. A. Il'enko, “On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S130–S135
Kondrat'ev A.S. Minigulov N.A., “On Finite Non-Solvable Groups Whose Gruenberg-Kegel Graphs Are Isomorphic to the Paw”, Commun. Math. Stat., 2021
A. S. Kondrat'ev, “Finite groups with given properties of their prime graphs”, Algebra and Logic, 55:1 (2016), 77–82