Abstract:
Let A be an abelian subgroup of a finite group G, and let B be a nilpotent subgroup of G. If G is solvable, then we prove that it contains an element g such that A⋂Bg⩽F(G), where F(G) is the Fitting subgroup of G. If G is not solvable, we prove that a counterexample of smallest order to the conjecture that A⋂Bg⩽F(G) for some element g of G is an almost simple group.
\Bibitem{Zen15}
\by V.~I.~Zenkov
\paper On intersections of abelian and nilpotent subgroups in finite groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 128--131
\mathnet{http://mi.mathnet.ru/timm1205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468096}
\elib{https://elibrary.ru/item.asp?id=24156705}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 174--177
\crossref{https://doi.org/10.1134/S0081543816090182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394441400018}
Linking options:
https://www.mathnet.ru/eng/timm1205
https://www.mathnet.ru/eng/timm/v21/i3/p128
This publication is cited in the following 4 articles:
V. I. Zenkov, “On Intersections of Nilpotent Subgroups in Finite Groups with Simple Socle from the “Atlas of Finite Groups””, Proc. Steklov Inst. Math. (Suppl.), 323:1 (2023), S321–S332
V. I. Zenkov, “On Intersections of Abelian and Nilpotent Subgroups in Finite Groups. II”, Math. Notes, 105:3 (2019), 366–375
V. I. Zenkov, “O peresecheniyakh par nilpotentnykh podgrupp v nebolshikh gruppakh”, Sib. elektron. matem. izv., 15 (2018), 21–28
V. I. Zenkov, “O peresechenii dvukh nilpotentnykh podgrupp v nebolshikh konechnykh gruppakh”, Sib. elektron. matem. izv., 13 (2016), 1099–1115