Abstract:
It is known that the solvability set (the maximal stable bridge) in a zero-sum differential game with simple motions, fixed terminal time, geometric constraints on the controls of the first and second players, and convex terminal set can be constructed by means of a program absorption operator. In this case, a backward procedure for the construction of $t$-sections of the solvability set does not need any additional partition times. We establish the same property for a game with simple motions, polygonal terminal set (which is generally nonconvex), and polygonal constraints on the players's controls in the plane. In the particular case of a convex terminal set, the operator used in the article coincides with the program absorption operator.
Keywords:
differential games with simple motions in the plane, solvability set, backward procedure.
Citation:
L. V. Kamneva, V. S. Patsko, “Stable bridge construction in games with simple motions in the plane”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 4, 2014, 128–142; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 125–139
\Bibitem{KamPat14}
\by L.~V.~Kamneva, V.~S.~Patsko
\paper Stable bridge construction in games with simple motions in the plane
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 4
\pages 128--142
\mathnet{http://mi.mathnet.ru/timm1121}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364423}
\elib{https://elibrary.ru/item.asp?id=22515140}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 125--139
\crossref{https://doi.org/10.1134/S0081543816020115}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971553936}
Linking options:
https://www.mathnet.ru/eng/timm1121
https://www.mathnet.ru/eng/timm/v20/i4/p128
This publication is cited in the following 5 articles:
L. G. Shagalova, “Kusochno lineinaya funktsiya tseny differentsialnoi igry s prostoi dinamikoi i integralno-terminalnym funktsionalom platy”, Materialy mezhdunarodnoi konferentsii “Geometricheskie metody v teorii upravleniya i matematicheskoi fizike”, posvyaschennoi 70-letiyu S.L. Atanasyana, 70-letiyu I.S. Krasilschika, 70-letiyu A.V. Samokhina, 80-letiyu V.T. Fomenko. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 25–28 sentyabrya 2018 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 168, VINITI RAN, M., 2019, 114–122
D. R. Kuvshinov, S. I. Osipov, “Numerical Stackelberg solutions in a class of positional differential games”, IFAC-PapersOnLine, 51:32 (2018), 326–330
L. G. Shagalova, “The value function of a differential game with simple motions and an integro–terminal payoff functional”, IFAC-PapersOnLine, 51:32 (2018), 861–865
L. G. Shagalova, “Funktsiya tseny differentsialnoi igry s prostymi dvizheniyami i integralno-terminalnoi platoi”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:124 (2018), 877–890
A. A. Ershov, V. N. Ushakov, “An approach problem for a control system with an unknown parameter”, Sb. Math., 208:9 (2017), 1312–1352