Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 4, Pages 116–127 (Mi timm1120)  

This article is cited in 5 scientific papers (total in 5 papers)

Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary

A. R. Danilinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Yeltsin Ural Federal University
Full-text PDF (188 kB) Citations (5)
References:
Abstract: We consider a problem of optimal control through a part of the boundary of solutions to an elliptic equation in a bounded domain with smooth boundary with a small parameter at the Laplace operator and integral constraints on the control. A complete asymptotic expansion of the solution to this problems in powers of the small parameter is constructed.
Keywords: singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
Received: 16.05.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 292, Issue 1, Pages 55–66
DOI: https://doi.org/10.1134/S008154381602005X
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, “Solution asymptotics in a problem of optimal boundary control of a flow through a part of the boundary”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 4, 2014, 116–127; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 55–66
Citation in format AMSBIB
\Bibitem{Dan14}
\by A.~R.~Danilin
\paper Solution asymptotics in a~problem of optimal boundary control of a~flow through a~part of the boundary
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 4
\pages 116--127
\mathnet{http://mi.mathnet.ru/timm1120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379275}
\elib{https://elibrary.ru/item.asp?id=22515139}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 292
\issue , suppl. 1
\pages 55--66
\crossref{https://doi.org/10.1134/S008154381602005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376272600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971537013}
Linking options:
  • https://www.mathnet.ru/eng/timm1120
  • https://www.mathnet.ru/eng/timm/v20/i4/p116
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :57
    References:46
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024