Abstract:
We present the probabilistic analysis of an approximation algorithm for the minimum-weight m-peripatetic salesman problem with different weight functions of their routes (Hamiltonian cycles). The time complexity of the algorithm is O(mn2). We assume that the entries of the distance matrix are independent equally distributed random variables with values in an upper-unbounded domain [an,∞), where an>0. The analysis is carried out for the example of truncated normal and exponential distributions. Estimates for the relative error and failure probability, as well as conditions for the asymptotic exactness of the algorithm, are found.
Keywords:m-peripatetic salesman problem, approximation algorithm, time complexity, asymptotic optimality, random instances, distribution function, truncated normal, exponential.
Citation:
E. Kh. Gimadi, A. M. Istomin, I. A. Rykov, O. Yu. Tsidulko, “Probabilistic analysis of an approximation algorithm for the m-peripatetic salesman problem on random instances unbounded from above”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 2, 2014, 88–98; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 77–87
\Bibitem{GimIstRyk14}
\by E.~Kh.~Gimadi, A.~M.~Istomin, I.~A.~Rykov, O.~Yu.~Tsidulko
\paper Probabilistic analysis of an approximation algorithm for the $m$-peripatetic salesman problem on random instances unbounded from above
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 2
\pages 88--98
\mathnet{http://mi.mathnet.ru/timm1061}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364142}
\elib{https://elibrary.ru/item.asp?id=21585627}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 289
\issue , suppl. 1
\pages 77--87
\crossref{https://doi.org/10.1134/S0081543815050077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356931500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84932616544}
Linking options:
https://www.mathnet.ru/eng/timm1061
https://www.mathnet.ru/eng/timm/v20/i2/p88
This publication is cited in the following 2 articles:
E. Kh. Gimadi, O. Yu. Tsidulko, “An asymptotically optimal algorithm for the $m$-peripatetic salesman problem on random inputs with discrete distribution”, J. Appl. Industr. Math., 11:3 (2017), 354–361
Edward Kh. Gimadi, Alexey M. Istomin, Oxana Yu. Tsidulko, Lecture Notes in Computer Science, 9869, Discrete Optimization and Operations Research, 2016, 136