Abstract:
A generalized modulus of continuity is defined in the space $L_2(\mathbb R^d)$ with Dunkl weight by means of an arbitrary zero-sum sequence of complex numbers. A sharp generalized Jackson inequality is proved for this modulus and the best approximations by entire functions of exponential spherical type. This inequality was earlier proved by S. N. Vasil'ev in the weightless case.
Keywords:
root system, reflection group, Dunkl weight, Dunkl transform, best approximation, modulus of continuity, Jackson inequality.
Citation:
V. I. Ivanov, Ha Thi Min Hue, “Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 109–118; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 88–98
\Bibitem{IvaHue14}
\by V.~I.~Ivanov, Ha Thi Min Hue
\paper Generalized Jackson inequality in the space $L_2(\mathbb R^d)$ with Dunkl weight
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 109--118
\mathnet{http://mi.mathnet.ru/timm1034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364196}
\elib{https://elibrary.ru/item.asp?id=21258487}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 88--98
\crossref{https://doi.org/10.1134/S0081543815020108}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958237086}
Linking options:
https://www.mathnet.ru/eng/timm1034
https://www.mathnet.ru/eng/timm/v20/i1/p109
This publication is cited in the following 4 articles:
S. B. Vakarchuk, “On Estimates in $L_2(\mathbb{R})$ of Mean $\nu$-Widths of Classes of Functions Defined via the Generalized Modulus of Continuity of $\omega_{\mathcal{M}}$”, Math. Notes, 106:2 (2019), 191–202
S. B. Vakarchuk, “Best Polynomial Approximations and Widths of Classes of Functions in the Space $L_2$”, Math. Notes, 103:2 (2018), 308–312
D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Pitt's Inequalities and Uncertainty Principle For Generalized Fourier Transform”, Int. Math. Res. Notices, 2016, no. 23, 7179–7200
V. I. Ivanov, A. V. Ivanov, “Optimal Arguments in the Jackson–Stechkin Inequality in $L_2(\mathbb{R}^d)$ with Dunkl Weight”, Math. Notes, 96:5 (2014), 666–677