Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2014, Volume 20, Number 1, Pages 83–91 (Mi timm1031)  

This article is cited in 7 scientific papers (total in 7 papers)

An estimate of an optimal argument in the sharp multidimensional Jackson–Stechkin $L_2$-inequality

D. V. Gorbachev

Tula State University
Full-text PDF (169 kB) Citations (7)
References:
Abstract: An estimate of an optimal argument in the sharp Jackson–Stechkin inequality in the space $L_2(\mathbb R^n)$ is proved in the case of a generalized modulus of continuity; its special case is the classical modulus of continuity. Similar statements hold for the torus $\mathbb T^n$. The obtained results agree with Chernykh's classical one-dimensional theorems and refine some results by S. N. Vasil'ev, A. I. Kozko, and N. I. Rozhdestvenskii.
Keywords: best approximation, generalized modulus of continuity, sharp multidimensional Jackson–Stechkin inequality.
Received: 09.01.2014
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, Volume 288, Issue 1, Pages 70–78
DOI: https://doi.org/10.1134/S008154381502008X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: D. V. Gorbachev, “An estimate of an optimal argument in the sharp multidimensional Jackson–Stechkin $L_2$-inequality”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 83–91; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 70–78
Citation in format AMSBIB
\Bibitem{Gor14}
\by D.~V.~Gorbachev
\paper An estimate of an optimal argument in the sharp multidimensional Jackson--Stechkin $L_2$-inequality
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2014
\vol 20
\issue 1
\pages 83--91
\mathnet{http://mi.mathnet.ru/timm1031}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364193}
\elib{https://elibrary.ru/item.asp?id=21258484}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2015
\vol 288
\issue , suppl. 1
\pages 70--78
\crossref{https://doi.org/10.1134/S008154381502008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000352991400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958236051}
Linking options:
  • https://www.mathnet.ru/eng/timm1031
  • https://www.mathnet.ru/eng/timm/v20/i1/p83
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:299
    Full-text PDF :68
    References:46
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024