Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2018, Volume 25, Issue 4, Pages 60–73
DOI: https://doi.org/10.25587/SVFU.2018.100.20554
(Mi svfu234)
 

Mathematics

On the density of a special class of Lizorkin functions in a weighted Lebesgue space $L^\gamma_p$

M. V. Polovinkinaa, S. A. Roshchupkinb

a Voronezh State University of Engineering Technologies, 19 Revolution Avenue, Voronezh 394036
b I. A. Bunin Yelets State University, 28.1 Kommunarov Street, Yelets 399770
Abstract: We study the class of test functions $\Phi^+_\gamma,$ constructed on the principle of Lizorkin spaces by means of mixed Fourier–Kipriyanov–Katrakhov transform. Initially, such classes of functions, constructed on the basis of a mixed Fourier–Bessel transform, were investigated by L. N. Lyakhov. The spaces introduced by him could not take into account “odd” orders of singular derivatives. But the latter appeared to be fundamentally necessary in the problems of determining the fundamental solutions of differential equations (ordinary and in partial derivatives). The integral Kipriyanov–Katrakhov transform (belonging to the class of Bessel transforms) is adapted to work with singular differential operators of the type $D^{2m+k}_B\frac{\partial^k}{\partial x^k}B^m_x,$ where $k$ takes values 0 or 1, $B^m_x$ is a singular differential Bessel operator and the order of differentiation is 2$m$. The spaces of the basic functions that represent the images of the mixed Fourier–Kipriyanov–Katrakhov transform of functions vanishing at the origin and infinity are considered in this paper. We study the possibility of approximating functions from weighted Lebesgue classes $L^{\gamma}_p$ with power weight $\Pi|x_i|^{\gamma_i},$ namely, the density theorem $\Phi^+_\gamma$ in the Lebesgue function space $L^\gamma_p$.
Keywords: Fourier transform, mixed Fourier–Bessel transform, Kipriyanov–Katrakhov transform, Fourier–Kipriyanov–Katrakhov transform, Lizorkin's function classes.
Received: 10.09.2018
Revised: 28.10.2018
Accepted: 13.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. V. Polovinkina, S. A. Roshchupkin, “On the density of a special class of Lizorkin functions in a weighted Lebesgue space $L^\gamma_p$”, Mathematical notes of NEFU, 25:4 (2018), 60–73
Citation in format AMSBIB
\Bibitem{PolRos18}
\by M.~V.~Polovinkina, S.~A.~Roshchupkin
\paper On the density of a special class of Lizorkin functions in a weighted Lebesgue space $L^\gamma_p$
\jour Mathematical notes of NEFU
\yr 2018
\vol 25
\issue 4
\pages 60--73
\mathnet{http://mi.mathnet.ru/svfu234}
\crossref{https://doi.org/10.25587/SVFU.2018.100.20554}
\elib{https://elibrary.ru/item.asp?id=36775152}
Linking options:
  • https://www.mathnet.ru/eng/svfu234
  • https://www.mathnet.ru/eng/svfu/v25/i4/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024