Mathematical notes of NEFU
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mathematical notes of NEFU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematical notes of NEFU, 2018, Volume 25, Issue 4, Pages 74–83
DOI: https://doi.org/10.25587/SVFU.2018.100.20555
(Mi svfu235)
 

Mathematics

On solvability of nonlocal boundary value problems for integro-differential equations

N. S. Popov

M. K. Ammosov North-Eastern Federal University, Institute of Mathematics and Informatics, 48 Kulakovsky Street, Yakutsk 677000, Russia
Abstract: We study the solvability of the initial-boundary value problem for linear integro-differential equations with a lateral boundary condition correlating values of the solution or its conormal derivative with values of some integral operator on the solution. We prove existence and uniqueness theorems for regular solutions. Recently, nonlocal boundary value problems for parabolic and hyperbolic equations with integral conditions on the lateral boundary are intensively studied, primarily in the classical case of second- and fourth-order equations. The systematic study of nonlocal boundary value problems, the problems of finding periodic solutions to elliptic equations, began in the article by A. V. Bitsadze and A. A. Samarskii (1969). A great contribution to the development of the theory of nonlocal problems for differential equations of various classes was made by A. L. Skubachevsky (1997) and A. M. Nakhushev (2006, 2012).
Keywords: integro-differential equation, Sobolev space, initial-boundary value problem, parameter continuation method, a priori estimates, regular solution.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.6069.2017/8.9
Received: 30.07.2018
Revised: 14.09.2018
Accepted: 13.11.2018
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: N. S. Popov, “On solvability of nonlocal boundary value problems for integro-differential equations”, Mathematical notes of NEFU, 25:4 (2018), 74–83
Citation in format AMSBIB
\Bibitem{Pop18}
\by N.~S.~Popov
\paper On solvability of nonlocal boundary value problems for integro-differential equations
\jour Mathematical notes of NEFU
\yr 2018
\vol 25
\issue 4
\pages 74--83
\mathnet{http://mi.mathnet.ru/svfu235}
\crossref{https://doi.org/10.25587/SVFU.2018.100.20555}
\elib{https://elibrary.ru/item.asp?id=36775153}
Linking options:
  • https://www.mathnet.ru/eng/svfu235
  • https://www.mathnet.ru/eng/svfu/v25/i4/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Mathematical notes of NEFU
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024