Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 3, Pages 500–510 (Mi smj982)  

This article is cited in 12 scientific papers (total in 12 papers)

The volterra property of some problems with the Bitsadze–Samarskii-type conditions for a mixed parabolic-hyperbolic equation

A. S. Berdyshev

Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
References:
Abstract: We consider problems with the Bitsadze–Samarskii-type conditions for a mixed parabolic-hyperbolic equation with noncharacteristic type change curve. We prove theorems on the unique existence of regular and strong solutions and the Volterra property for the problems under consideration.
Keywords: parabolic-hyperbolic equation, Bitsadze–Samarskii problem, solvability, Volterra property.
Received: 19.05.2004
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 3, Pages 386–395
DOI: https://doi.org/10.1007/s11202-005-0041-y
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: A. S. Berdyshev, “The volterra property of some problems with the Bitsadze–Samarskii-type conditions for a mixed parabolic-hyperbolic equation”, Sibirsk. Mat. Zh., 46:3 (2005), 500–510; Siberian Math. J., 46:3 (2005), 386–395
Citation in format AMSBIB
\Bibitem{Ber05}
\by A.~S.~Berdyshev
\paper The volterra property of some problems with the Bitsadze--Samarskii-type conditions for a~mixed parabolic-hyperbolic equation
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 3
\pages 500--510
\mathnet{http://mi.mathnet.ru/smj982}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164555}
\zmath{https://zbmath.org/?q=an:1094.35084}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 3
\pages 386--395
\crossref{https://doi.org/10.1007/s11202-005-0041-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229958200002}
Linking options:
  • https://www.mathnet.ru/eng/smj982
  • https://www.mathnet.ru/eng/smj/v46/i3/p500
  • This publication is cited in the following 12 articles:
    1. Maksat Ashyraliyev, Maral Ashyralyyeva, “Stable difference schemes for hyperbolic–parabolic equations with unknown parameter”, Bol. Soc. Mat. Mex., 30:1 (2024)  crossref
    2. Nauryzbay Adil, Abdumauvlen S. Berdyshev, B. E. Eshmatov, Zharasbek D. Baishemirov, “Solvability and Volterra property of nonlocal problems for mixed fractional-order diffusion-wave equation”, Bound Value Probl, 2023:1 (2023)  crossref
    3. Sadybekov M.A., Dildabek G., Ivanova M.B., “Spectral Properties of a Frankl Type Problem For Parabolic-Hyperbolic Equations”, Electron. J. Differ. Equ., 2018  mathscinet  isi
    4. Dildabek G., Sadybekov M.A., Saprygina M.B., “On a Volterra Property of An Problem of the Frankl Type For An Equation of the Mixed Parabolic-Hyperbolic Type”, Proceedings of the 43rd International Conference Applications of Mathematics in Engineering and Economics, AMEE'17, AIP Conference Proceedings, 1910, eds. Pasheva V., Popivanov N., Venkov G., Amer. Inst. Physics, 2017, UNSP 040004  crossref  isi  scopus
    5. Dildabek G., Saprygina M.B., “Volterra Property of An Problem of the Frankl Type For An Parabolic-Hyperbolic Equation”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA 2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer. Inst. Physics, 2017, UNSP 050011  crossref  isi  scopus
    6. T. Sh. Kal'menov, M. A. Sadybekov, “On a Frankl-type problem for a mixed parabolic-hyperbolic equation”, Siberian Math. J., 58:2 (2017), 227–231  mathnet  crossref  crossref  isi  elib  elib
    7. Dildabek G., “on a New Nonlocal Boundary Value Problem For An Equation of the Mixed Parabolic-Hyperbolic Type”, Applications of Mathematics in Engineering and Economics (AMEE'16), AIP Conference Proceedings, 1789, eds. Pasheva V., Popivanov N., Venkov G., Amer Inst Physics, 2016, UNSP 040018  crossref  isi  scopus
    8. Kalmenov T.Sh., Sadybekov M., “on a Problem of the Frankl Type For An Equation of the Mixed Parabolic-Hyperbolic Type”, International Conference on Analysis and Applied Mathematics (ICAAM 2016), AIP Conference Proceedings, 1759, eds. Ashyralyev A., Lukashov A., Amer. Inst. Physics, 2016, 020001  crossref  isi  scopus
    9. Abdumauvlen S Berdyshev, Alberto Cabada, Erkinjon T Karimov, Nazgul S Akhtaeva, “On the Volterra property of a boundary problem with integral gluing condition for a mixed parabolic-hyperbolic equation”, Bound Value Probl, 2013:1 (2013)  crossref
    10. He Ch., Liu Ch., “Nonexistence for mixed-type equations with critical exponent nonlinearity in a ball”, Appl. Math. Lett., 24:5 (2011), 679–686  crossref  mathscinet  zmath  isi  elib  scopus
    11. Berdyshev A.S., Rakhmatullaeva N.A., “Non-Local Problems for Parabolic-Hyperbolic Equations with Deviation From the Characteristics and Three Type-Changing Lines”, Electronic Journal of Differential Equations, 2011, 07  mathscinet  zmath  isi
    12. Babak P., “Nonlocal problems involving spatial structure for coupled reaction-diffusion systems”, Applied Mathematics and Computation, 185:1 (2007), 449–463  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :163
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025