Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2005, Volume 46, Number 3, Pages 483–499 (Mi smj981)  

This article is cited in 20 scientific papers (total in 20 papers)

On the best approximation properties of $C^\infty$-smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods)

V. N. Belykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In 1975 K. I. Babenko announced his discovery of conceptually new unsaturated numerical methods. They are distinguished by the absence of the principal error term, which results in their ability to adjust automatically to all natural correctness classes of problems (the phenomenon of unsaturated numerical methods).
We show that the phenomenon of unsaturation of a numerical method on an interval is a consequence, although exceptionally subtle, of the well-developed theory of polynomial approximation to continuous functions. By the way, K. I. Babenko always insisted on that.
Keywords: unsaturated numerical method, exponential convergence, overconvergence.
Received: 17.04.2003
English version:
Siberian Mathematical Journal, 2005, Volume 46, Issue 3, Pages 373–385
DOI: https://doi.org/10.1007/s11202-005-0040-z
Bibliographic databases:
UDC: 519.651
Language: Russian
Citation: V. N. Belykh, “On the best approximation properties of $C^\infty$-smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods)”, Sibirsk. Mat. Zh., 46:3 (2005), 483–499; Siberian Math. J., 46:3 (2005), 373–385
Citation in format AMSBIB
\Bibitem{Bel05}
\by V.~N.~Belykh
\paper On the best approximation properties of~$C^\infty$-smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods)
\jour Sibirsk. Mat. Zh.
\yr 2005
\vol 46
\issue 3
\pages 483--499
\mathnet{http://mi.mathnet.ru/smj981}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164554}
\zmath{https://zbmath.org/?q=an:1102.65014}
\elib{https://elibrary.ru/item.asp?id=14447031}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 3
\pages 373--385
\crossref{https://doi.org/10.1007/s11202-005-0040-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229958200001}
Linking options:
  • https://www.mathnet.ru/eng/smj981
  • https://www.mathnet.ru/eng/smj/v46/i3/p483
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :127
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024