Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 5, Pages 1022–1028
DOI: https://doi.org/10.33048/smzh.2024.65.518
(Mi smj7907)
 

An inverse problem for a nonlinear transport equation

V. G. Romanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Under consideration is a nonlinear transport equation containing two nonlinearities and a coefficient $q(\mathbf{x})$ of a lower-order nonlinear term depending on two or three space variables. We study the direct problem with the data on a part of the lateral surface of a cylindrical domain, explicitly construct a solution, and prove the uniqueness of the solution. Also, we state the problem of recovering the coefficient $q(\mathbf{x})$ on some information about a solution to the direct problem and demonstrate that the inverse problem reduces to an X-ray tomography problem. This opens a way to its efficient numerical solution.
Keywords: nonlinear transport equation, inverse problem, tomography, uniqueness.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0009
Received: 29.07.2024
Revised: 30.07.2024
Accepted: 20.08.2024
Document Type: Article
UDC: 517.957
MSC: 35R30
Language: Russian
Citation: V. G. Romanov, “An inverse problem for a nonlinear transport equation”, Sibirsk. Mat. Zh., 65:5 (2024), 1022–1028
Citation in format AMSBIB
\Bibitem{Rom24}
\by V.~G.~Romanov
\paper An inverse problem for a~nonlinear transport equation
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 5
\pages 1022--1028
\mathnet{http://mi.mathnet.ru/smj7907}
\crossref{https://doi.org/10.33048/smzh.2024.65.518}
Linking options:
  • https://www.mathnet.ru/eng/smj7907
  • https://www.mathnet.ru/eng/smj/v65/i5/p1022
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:27
    Full-text PDF :1
    References:10
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024