Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 5, Pages 1011–1021
DOI: https://doi.org/10.33048/smzh.2024.65.517
(Mi smj7906)
 

The strong $\pi$-Sylow theorem for the groups PSL$_2(q)$

D. O. Revina, V. D. Shepelevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: Let $\pi$ be a set of primes. A finite group $G$ is a $\pi$-group if all prime divisors of the order of $G$ belong to $\pi$. Following Wielandt, the $\pi$-Sylow theorem holds for $G$ if all maximal $\pi$-subgroups of $G$ are conjugate; if the $\pi$-Sylow theorem holds for every subgroup of $G$ then the strong $\pi$-Sylow theorem holds for $G$. The strong $\pi$-Sylow theorem is known to hold for $G$ if and only if it holds for every nonabelian composition factor of $G$. In 1979, Wielandt asked which finite simple nonabelian groups obey the strong $\pi$-Sylow theorem. By now the answer is known for sporadic and alternating groups. We give some arithmetic criterion for the validity of the strong $\pi$-Sylow theorem for the groups $\operatorname{PSL}_2(q)$.
Keywords: $\pi$-Sylow theorem, strong $\pi$-Sylow theorem, projective special linear group.
Funding agency Grant number
Russian Science Foundation 24-21-00163
Received: 10.04.2024
Revised: 11.06.2024
Accepted: 20.06.2024
Document Type: Article
UDC: 512.542
MSC: 35R30
Language: Russian
Citation: D. O. Revin, V. D. Shepelev, “The strong $\pi$-Sylow theorem for the groups PSL$_2(q)$”, Sibirsk. Mat. Zh., 65:5 (2024), 1011–1021
Citation in format AMSBIB
\Bibitem{RevShe24}
\by D.~O.~Revin, V.~D.~Shepelev
\paper The strong $\pi$-Sylow theorem for the groups~PSL$_2(q)$
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 5
\pages 1011--1021
\mathnet{http://mi.mathnet.ru/smj7906}
\crossref{https://doi.org/10.33048/smzh.2024.65.517}
Linking options:
  • https://www.mathnet.ru/eng/smj7906
  • https://www.mathnet.ru/eng/smj/v65/i5/p1011
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:36
    Full-text PDF :3
    References:13
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024