Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 3, Pages 613–625
DOI: https://doi.org/10.33048/smzh.2022.63.310
(Mi smj7680)
 

A new nonreduced moduli component of rank-$2$ semistable sheaves on ${\Bbb P}^{3}$

A. N. Lavrov

Department of Mathematics, National Research University "Higher School of Economics", Moscow
References:
Abstract: We describe a new irreducible component of the Gieseker–Maruyama moduli scheme $\mathcal{M}(14)$ of coherent rank-$2$ semistable sheaves with Chern classes $c_1=0$, $c_2=14$, and $c_3=0$ on ${\Bbb P}^{3}$ which is nonreduced at a general point. The construction of the component is based on Mumford's famous example of the nonreduced component of the Hilbert scheme of smooth space curves of degree $14$ and genus $24$ in ${\Bbb P}^{3}$.
Keywords: rank-2 semistable sheaves, reflexive sheaves, moduli spaces.
Funding agency Grant number
Russian Science Foundation 21-41-09011
The author was supported by the Russian Science Foundation (Grant no. 21–41–09011).
Received: 11.04.2021
Revised: 05.06.2021
Accepted: 11.06.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 3, Pages 509–519
DOI: https://doi.org/10.1134/S0037446622030107
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: 35R30
Language: Russian
Citation: A. N. Lavrov, “A new nonreduced moduli component of rank-$2$ semistable sheaves on ${\Bbb P}^{3}$”, Sibirsk. Mat. Zh., 63:3 (2022), 613–625; Siberian Math. J., 63:3 (2022), 509–519
Citation in format AMSBIB
\Bibitem{Lav22}
\by A.~N.~Lavrov
\paper A~new nonreduced moduli component of rank-$2$ semistable sheaves on~${\Bbb P}^{3}$
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 3
\pages 613--625
\mathnet{http://mi.mathnet.ru/smj7680}
\crossref{https://doi.org/10.33048/smzh.2022.63.310}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4433316}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 3
\pages 509--519
\crossref{https://doi.org/10.1134/S0037446622030107}
Linking options:
  • https://www.mathnet.ru/eng/smj7680
  • https://www.mathnet.ru/eng/smj/v63/i3/p613
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :16
    References:27
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024