Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2022, Volume 63, Number 3, Pages 626–638
DOI: https://doi.org/10.33048/smzh.2022.63.311
(Mi smj7681)
 

Lattice characterizations of finite supersoluble groups

A. -M. Liua, W. Guoa, I. N. Safonovab, A. N. Skibac

a School of Science, Hainan University
b Belarusian State University, Minsk
c Gomel State University named after Francisk Skorina
References:
Abstract: Let $G$ be a finite group. A subgroup $H$ of $G$ is $\mathfrak {U}$-normal in $G$ if every chief factor of $G$ between $H_{G}$ and $H^{G}$ is cyclic; $H$ is Sylow permutable in $G$ if $H$ commutes with every Sylow subgroup $P$ of $G$, i.e., $HP = PH$. We say that a subgroup $H$ of $G$ is $\mathfrak{U} \wedge sp$-embedded in $G$ if $H = A \cap B$ for some $\mathfrak{U}$-normal subgroup $A$ and Sylow permutable subgroup $B$ in $G$. We find the systems of subgroups $\mathcal L$ in $G$ such that $G$ is supersoluble provided that each $H \in \mathcal L$ is $\mathfrak{U} \wedge sp$-embedded in $G$. In particular, we give new characterizations of finite supersoluble groups.
Keywords: finite group, Sylow permutable subgroup, $\mathfrak{U}$-normal subgroup, $\mathfrak{U} \wedge sp$-embedded subgroup, supersoluble group.
Funding agency Grant number
National Natural Science Foundation of China 12171126
12101165
ÃÏÍÈ "Êîíâåðãåíöèÿ-2025" 20211328
Belarusian Republican Foundation for Fundamental Research Ô20Ð-291
The research was supported by the NNSF of China (nos. 12171126 and 12101165) and the Key Laboratory of Engineering Modeling and Statistical Computing of the Hainan Province. The work of the third author was carried out as part of the task of the State Program for Scientific Research “Convergence–2025” with financial support from the Ministry of Education of the Republic of Belarus (Project 20211328). The fourth author was supported by the Belarusian Republican Foundation for Basic Research (Grant no. F20R–291).
Received: 12.09.2021
Revised: 03.11.2021
Accepted: 10.12.2021
English version:
Siberian Mathematical Journal, 2022, Volume 63, Issue 3, Pages 520–529
DOI: https://doi.org/10.1134/S0037446622030119
Document Type: Article
UDC: 512.542
Language: Russian
Citation: A. -M. Liu, W. Guo, I. N. Safonova, A. N. Skiba, “Lattice characterizations of finite supersoluble groups”, Sibirsk. Mat. Zh., 63:3 (2022), 626–638; Siberian Math. J., 63:3 (2022), 520–529
Citation in format AMSBIB
\Bibitem{LiuGuoSaf22}
\by A.~-M.~Liu, W.~Guo, I.~N.~Safonova, A.~N.~Skiba
\paper Lattice characterizations of~finite supersoluble groups
\jour Sibirsk. Mat. Zh.
\yr 2022
\vol 63
\issue 3
\pages 626--638
\mathnet{http://mi.mathnet.ru/smj7681}
\crossref{https://doi.org/10.33048/smzh.2022.63.311}
\transl
\jour Siberian Math. J.
\yr 2022
\vol 63
\issue 3
\pages 520--529
\crossref{https://doi.org/10.1134/S0037446622030119}
Linking options:
  • https://www.mathnet.ru/eng/smj7681
  • https://www.mathnet.ru/eng/smj/v63/i3/p626
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ñèáèðñêèé ìàòåìàòè÷åñêèé æóðíàë Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024