Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 4, Pages 912–926
DOI: https://doi.org/10.17377/smzh.2018.59.414
(Mi smj3019)
 

This article is cited in 7 scientific papers (total in 7 papers)

Characterization of $2$-local derivations and local Lie derivations on some algebras

J. He, J. Li, G. An, W. Huang

Department of Mathematics, East China University of Science and Technology Shanghai, China
Full-text PDF (343 kB) Citations (7)
References:
Abstract: We prove that each $2$-local derivation from the algebra $M_n(\mathscr A)$ ($n>2$) into its bimodule $M_n(\mathscr M)$ is a derivation, where $\mathscr A$ is a unital Banach algebra and $\mathscr M$ is a unital $\mathscr A$-bimodule such that each Jordan derivation from $\mathscr A$ into $\mathscr M$ is an inner derivation, and that each $2$-local derivation on a $C^*$-algebra with a faithful traceable representation is a derivation. We also characterize local and $2$-local Lie derivations on some algebras such as von Neumann algebras, nest algebras, the Jiang–Su algebra, and UHF algebras.
Keywords: $2$-local derivation, local Lie derivation, $2$-local Lie derivation, matrix algebra, von Neumann algebra.
Funding agency Grant number
National Natural Science Foundation of China 11371136
The authors were partially supported by the National Natural Science Foundation of China (Grant 11371136).
Received: 21.10.2016
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 4, Pages 721–730
DOI: https://doi.org/10.1134/S0037446618040146
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: J. He, J. Li, G. An, W. Huang, “Characterization of $2$-local derivations and local Lie derivations on some algebras”, Sibirsk. Mat. Zh., 59:4 (2018), 912–926; Siberian Math. J., 59:4 (2018), 721–730
Citation in format AMSBIB
\Bibitem{HeLiAn18}
\by J.~He, J.~Li, G.~An, W.~Huang
\paper Characterization of $2$-local derivations and local Lie derivations on some algebras
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 4
\pages 912--926
\mathnet{http://mi.mathnet.ru/smj3019}
\crossref{https://doi.org/10.17377/smzh.2018.59.414}
\elib{https://elibrary.ru/item.asp?id=36212832}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 4
\pages 721--730
\crossref{https://doi.org/10.1134/S0037446618040146}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443717700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053007995}
Linking options:
  • https://www.mathnet.ru/eng/smj3019
  • https://www.mathnet.ru/eng/smj/v59/i4/p912
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :31
    References:32
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024