Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 4, Pages 927–952
DOI: https://doi.org/10.17377/smzh.2018.59.415
(Mi smj3020)
 

This article is cited in 1 scientific paper (total in 1 paper)

Orthogonality relations for a stationary flow of an ideal fluid

V. A. Sharafutdinovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (404 kB) Citations (1)
References:
Abstract: For a real solution $(u,p)$ to the Euler stationary equations for an ideal fluid, we derive an infinite series of the orthogonality relations that equate some linear combinations of $m$th degree integral momenta of the functions $u_iu_j$ and $p$ to zero ($m=0,1,\dots$). In particular, the zeroth degree orthogonality relations state that the components ui of the velocity field are $L^2$-orthogonal to each other and have coincident $L^2$-norms. Orthogonality relations of degree $m$ are valid for a solution belonging to a weighted Sobolev space with the weight depending on $m$.
Keywords: Euler equations, stationary flow, ideal fluid, integral momenta.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-150001
The author was supported by the Russian Foundation for Basic Research (Grant 17-51-150001).
Received: 30.09.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 4, Pages 731–752
DOI: https://doi.org/10.1134/S0037446618040158
Bibliographic databases:
Document Type: Article
UDC: 517.956
MSC: 35R30
Language: Russian
Citation: V. A. Sharafutdinov, “Orthogonality relations for a stationary flow of an ideal fluid”, Sibirsk. Mat. Zh., 59:4 (2018), 927–952; Siberian Math. J., 59:4 (2018), 731–752
Citation in format AMSBIB
\Bibitem{Sha18}
\by V.~A.~Sharafutdinov
\paper Orthogonality relations for a~stationary flow of an ideal fluid
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 4
\pages 927--952
\mathnet{http://mi.mathnet.ru/smj3020}
\crossref{https://doi.org/10.17377/smzh.2018.59.415}
\elib{https://elibrary.ru/item.asp?id=35720506}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 4
\pages 731--752
\crossref{https://doi.org/10.1134/S0037446618040158}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443717700015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052988799}
Linking options:
  • https://www.mathnet.ru/eng/smj3020
  • https://www.mathnet.ru/eng/smj/v59/i4/p927
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :49
    References:39
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024