Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2018, Volume 59, Number 1, Pages 41–55
DOI: https://doi.org/10.17377/smzh.2018.59.104
(Mi smj2952)
 

This article is cited in 2 scientific papers (total in 2 papers)

Geodesics and curvatures of special sub-Riemannian metrics on Lie groups

V. N. Berestovskiiab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (349 kB) Citations (2)
References:
Abstract: Let $G$ be a full connected semisimple isometry Lie group of a connected Riemannian symmetric space $M=G/K$ with the stabilizer $K$; $p\colon G\to G/K=M$ the canonical projection which is a Riemannian submersion for some $G$-left invariant and $K$-right invariant Riemannian metric on $G$, and $d$ is a (unique) sub-Riemannian metric on $G$ defined by this metric and the horizontal distribution of the Riemannian submersion $p$. It is proved that each geodesic in $(G,d)$ is normal and presents an orbit of some one-parameter isometry group. By the Solov'ev method, using the Cartan decomposition for $M=G/K$, the author found the curvatures of the homogeneous sub-Riemannian manifold $(G,d)$. In the case $G=\operatorname{Sp}(1)\times\operatorname{Sp}(1)$ with the Riemannian symmetric space $S^3=\operatorname{Sp}(1)=G/\operatorname{diag}(\operatorname{Sp}(1)\times\operatorname{Sp}(1))$ the curvatures and torsions are calculated of images in $S^3$ of all geodesics on $(G,d)$ with respect to $p$.
Keywords: geodesic orbit space, left invariant sub-Riemannian metric, Lie algebra, Lie group, normal geodesic, Riemannian symmetric space.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.3087.2017/4.6
The author was supported by the Ministry of Education and Science of the Russian Federation (Grant 1.3087.2017/4.6).
Received: 26.04.2017
English version:
Siberian Mathematical Journal, 2018, Volume 59, Issue 1, Pages 31–42
DOI: https://doi.org/10.1134/S0037446618010044
Bibliographic databases:
Document Type: Article
UDC: 514.752.8+514.763+514.765+514.764.227
MSC: 35R30
Language: Russian
Citation: V. N. Berestovskii, “Geodesics and curvatures of special sub-Riemannian metrics on Lie groups”, Sibirsk. Mat. Zh., 59:1 (2018), 41–55; Siberian Math. J., 59:1 (2018), 31–42
Citation in format AMSBIB
\Bibitem{Ber18}
\by V.~N.~Berestovskii
\paper Geodesics and curvatures of special sub-Riemannian metrics on Lie groups
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 1
\pages 41--55
\mathnet{http://mi.mathnet.ru/smj2952}
\crossref{https://doi.org/10.17377/smzh.2018.59.104}
\elib{https://elibrary.ru/item.asp?id=32824584}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 1
\pages 31--42
\crossref{https://doi.org/10.1134/S0037446618010044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427144300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043522149}
Linking options:
  • https://www.mathnet.ru/eng/smj2952
  • https://www.mathnet.ru/eng/smj/v59/i1/p41
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024