Abstract:
We investigate the structure of lattices of subclasses of different types; among those are relative sub(quasi)variety lattices as well as relative (finitary) subprevariety lattices. Among other results, we prove a reduction theorem for (finitary) subprevariety lattices which generalizes a result of V. A. Gorbunov. We also answer a question by D. E. Palchunov and provide some noncomputability properties of lattices of relative subclasses.
Lattices of subclasses M. V. Semenova, A. Zamojska-Dzienio Sibirsk. Mat. Zh., 2012, 53:5, 1111–1132
Lattices of subclasses. III A. Basheyeva, A. Nurakunov, M. Schwidefsky, A. Zamojska-Dzienio Sib. Èlektron. Mat. Izv., 2017, 14, 252–263
This publication is cited in the following 9 articles:
A. V. Kravchenko, M. V. Schwidefsky, “On the complexity of the lattices of subvarieties and congruences. II. Differential groupoids and unary algebras”, Sib. elektron. matem. izv., 17 (2020), 753–768
Kravchenko A.V., Nurakunov A.M., Schwidefsky M.V., “on the Complexity of the Lattices of Subvarieties and Congruences”, Int. J. Algebr. Comput., 30:8 (2020), 1609–1624
S. M. Lutsak, “O slozhnosti reshetok kvazimnogoobrazii”, Sib. elektron. matem. izv., 14 (2017), 92–97
A. Basheyeva, A. Nurakunov, M. Schwidefsky, A. Zamojska-Dzienio, “Lattices of subclasses. III”, Sib. elektron. matem. izv., 14 (2017), 252–263
M. V. Schwidefsky, “Complexity of quasivariety lattices”, Algebra and Logic, 54:3 (2015), 245–257
A. M. Nurakunov, “Quasivariety lattices of pointed Abelian groups”, Algebra and Logic, 53:3 (2014), 238–257
Schwidefsky M., Zamojska-Dzienio A., “Lattices of Subclasses. II”, Int. J. Algebr. Comput., 24:8 (2014), 1099–1126
A. Nurakunov, M. Semenova, A. Zamojska-Dzienio, “On lattices connected with various types of classes of algebraic structures”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2012, 167–179